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SUMMARY

Social media and online navigation bring us enjoyable experiences in accessing in-
formation, and simultaneously create information cocoons (ICs) in which we are
unconsciously trapped with limited and biased information. We provide a formal
definition of IC in the scenario of online navigation. Subsequently, by analyzing
real recommendation networks extracted from Science, PNAS, and Amazon web-
sites, and testing mainstream algorithms in disparate recommender systems, we
demonstrate that similarity-based recommendation techniques result in ICs,
which suppress the system navigability by hundreds of times.We further propose
a flexible recommendation strategy that addresses the IC-induced problem and
improves retrieval accuracy in navigation, which are demonstrated by simulations
on real data and online experiments on the largest video website in China. This
paper quantifies the challenge of ICs in recommender systems and presents a
viable solution, which offer insights into the industrial design of algorithms,
future scientific studies, as well as policy making.

INTRODUCTION

The explosive development of information technologies and services, in particular the emergence of portal

sites, recommender systems, search engines, and social media, has led us to a world of abundant informa-

tion. We access diverse information via increasing sources, yet it is widely believed that information

cocoons (ICs) are very often emerged in which we are unconsciously trapped with limited and biased infor-

mation.1 The proliferation of ICs may result in an increase in social fragmentation, polarization, and

extremism, and eventually intensify segregation and threaten democracy.1–6

Contributing factors to ICs are various, which can be roughly classified into two categories, namely

active selection and passive choice. Individuals tend to access and produce information with similar opin-

ions but overlook different voices.7–9 The social network formed by like-minded people is also enhancing

such information segregation that individuals are more often exposed to information communicated

by his/her chosen friends.10–16 As such, each person is at risk to be positioned in virtual ‘‘cocoons’’ consist-

ing of self-selected information, leading to an echo chamber effect. Although ICs induced by active

selection are of one’s own choice, either intentionally or unintentionally, people also struggle with ICs of

passive choice. Search engines and recommender systems are nowadays widely implemented to feed in-

formation to users according to their past records. Such feed may be very homogeneous, creating filter

bubbles that narrow users’ navigation scopes.17–19 For example, a news website may recommend only

conservative or liberal news to a target user based on the analytical assumption of his/her political view,

or recommend friends who have very similar political views. Consequently, the behaviors of active

selection and passive choice may coact and reinforce ICs via friend recommendations20,21 and news

recommendations.22–24

Although IC-related issues are under the spotlight of investigation and heated debates,11,25–31 quantitative

studies about the existence and influence of ICs are rare, largely because of the lack of an explicit definition

of IC and subsequently a benchmark for quantitative analyses. Here we provide a mathematically formal

definition of IC in a common scenario of online navigation, namely the recommendation network (RN)

that connects similar contents with hyperlinks (URL links) according to algorithmic evaluations32–34 (Fig-

ure 1, Figure S1). Denoting GðV ;EÞ a directed RN where V and E are a set of nodes (objects) and a set

of directed links (hyperlinks), then an IC is defined as a subsetC˛V such that (1) the subgraphG½C� induced
by C is strongly connected, and (2) there is no outgoing link from a node in C to a node outside C. A node

belonging to an IC is called an IC node (note, a node at most belongs to one IC) and the number of nodes in

an IC is called its size.
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Figure 1. The recommendation network (RN) of Amazon kindle books

(A) Screenshot of a book’s webpage from Amazon, where a list of recommended books is displayed with hyperlinks (URL links) embedded. More examples

are shown in Figure S1.

(B) A sample of collectedAmazon RN, where each node is a kindle book, and each directed link represents a hyperlink. The node sizes are proportional to the

logarithm of visiting frequencies of a random walk.

(C–F) Showcases of four information cocoons and their neighboring nodes, which are empirically observed in the Amazon RN.
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With such a definition, the aim of this paper is threefold: (1) To quantify the impact of ICs on the efficiency of

online navigation systems; (2) to unfold the mechanism underlying the emergence of ICs; and (3) to provide

a solution to ease IC-induced problems.

Impact of ICs on navigability

We firstly examine three empirical RNs, namely the Science RN of articles, PNAS RN of articles, andAmazon

RN of kindle books, which are collected from the three mentioned websites (see method details for

description of data collection). Figure 1 illustrates the case of Amazon. In the website of Amazon, the

page of each kindle book lists several recommended books with hyperlinks embedded (Figure 1A). These

hyperlinks constitute theAmazon RN (Figure 1B), aiming to help users explore relevant information. Table 1

presents fundamental statistics of the three empirical RNs. In such RNs, the in-degree of a node k largely

describes how often the article/kindle book gets recommended by others, and thus well links with its vis-

ibility in the network for the surfing users. As shown in Figure 2A, the in-degree distributions of empirical

RNs show heavy-tailed patterns. Although most nodes barely get recommended, there are hub nodes that

frequently show up in others’ recommendation lists, and thus have much higher chances to be visited by

users. In particular, according to the definition, 96, 79, and 1181 ICs in Science, PNAS, and Amazon RNs

have been identified, respectively (Figures 1C–1F reveal four typical ICs in Amazon RN, see method details

for the identification of ICs). Most ICs in empirical RNs are of rather small sizes (Table S1). This is largely

owing to the strict definition, because a large subgraph is unlikely to be strongly connected.

We apply randomwalks35 to simulate users’ surfing activities. Generally, the more nodes being visited

within a given number of clicks, the more diverse information could be accessed. Such a quantity can be

well characterized by network navigability.36 Given an RNwithN nodes, its navigabilityUðGÞ can be defined

as the expected coverage of distinct nodes being visited during an N-steps random walk from a randomly

selected starting node. Accordingly, a higher navigability suggests higher diversity of information access
2 iScience 26, 105893, January 20, 2023



Table 1. Statistics for the studied recommendation networks

RN #Objects #ICs #IC nodes IC traffic Navigability

Empirical RNs

Science 7,730 96 350 94.77% 0.44%

PNAS 59,479 79 415 96.98% 0.67%

Amazon 119,636 1,181 10,859 95.81% 0.07%

Derived RNs

Steam 10,978 10.00 113.70 99.99% 0.06%

Yelp 60,785 8.90 164.90 22.85% 0.09%

Epinions 61,273 3.00 46.30 99.98% 0.05%

MovieLens 33,670 1.00 8.00 99.99% 0.03%

The symbol # stands for the number of and IC traffic means the percentage of visits on IC nodes during an N-steps random

walk. The results regarding derived RNs are averaged over 20 realizations, and the standard deviations among different re-

alizations are reported in Table S3.
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from the RN. Denoting nðtÞ the expected number of distinct nodes being visited during a t-steps random

walk, for a completely random network, the growth of nðtÞ follows the dynamics

d

dt
nðtÞ = 1 � 1

N
nðtÞ; (Equation 1)

and, thus, we have

nðtÞ = N
�
1 � e� t=N

�
(Equation 2)

Hence, the corresponding navigability is

U =
nðNÞ
N

= 1 � 1

e
z63:21%: (Equation 3)

To validate the above prediction, we create random RNs with N = 53104 nodes by letting each node con-

nects to L = 5 others randomly. As shown in Figure 2B, simulations in random RNs well follow such predic-

tion. However, to our surprise, navigabilities of the three empirical RNs are all less than 1% (see Figure 2C),

whereas IC nodes monopolize most traffic (generally R 95%, see Table 1).

As in-degree distributions of the three RNs are heavy-tailed, it is also possible that hub nodes with large in-de-

grees dominate the traffic. To separate effects from ICs and hub nodes, we apply the link-crossing operations

sufficiently many times to get first-order null networks.37 In each operation, two links, say a/b and c/ d, are

randomly selected and switched as a/d and c/b. The selection ensures the avoidance of multiple links and

loops. In a null network, the degree sequence keeps unchangedwhile ICs are absent. As shown in Figure 2C, in

despite of the presence of hub nodes, nðtÞ curves for null networks closely follow the prediction of randomnet-

works, suggesting that IC nodes rather than hub nodes result in poor navigabilities.

To further demonstrate the impact of ICs on navigability, we insert ICs to completely random RNs where

each node connects to Lrandom others. To insert an IC to the RN, we randomly select a node as the target,

remove all out-going links of its L recommending nodes, and reconnect the target and its L recommending

nodes to form a fully connected network. Then we obtain an IC of size S = L+ 1. By manipulating the num-

ber of inserted ICs, the number of IC nodes, denoted as c, can be controlled accordingly. Assuming c > 0 IC

nodes are inserted into a random RN. The random walk in this network can thus be regarded as a Bernoulli

process, where at each step, the walker has a probability of r = c=N to visit an IC node, and thereby fall into

an IC. The number of steps until falling into an IC for the first time, denoted as s0, follows a Geometric dis-

tribution as pðs0 = tÞ = rð1 � rÞt . Consequently, the expected number of steps until falling into an IC is

Cs0D = 1=r = N=c. Once the walker falls into an IC, only the nodes within this IC can be visited. Therefore,

the number of distinct visited objects during anN-steps randomwalk can be calculated by summing up two

parts: visited nodes before and after falling into an IC. Accordingly, we have

nðNÞ = nðt = s0Þ + S � 1 = N
�
1 � e� s0

N

�
+ S � 1: (Equation 4)
iScience 26, 105893, January 20, 2023 3
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Figure 2. Structural efficiency of empirical RNs

(A) Binned in-degree distributions of empirical RNs.

(B and C) Number of distinct nodes being visited during random walks in the random RNs and empirical RNs respectively.

The red curve denotes the prediction from a completely random network (Equation 2). Gray circles, squares, and triangles

in (C) represent the results for the null networks of Science, PNAS, and Amazon RNs.

(D) Navigability of random RNs with manipulated ICs. The red curve denotes the prediction as specified by Equation 5. All

the reported results regarding random RNs are averaged over 20 independent realizations with N = 53104 nodes and

each node connecting to L = 5 random others. For each network under consideration, the result is averaged over N

random walk experiments with each node being once the starting node.
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Taking s0 = N=c into the above equation, the navigability of a random RN with c IC nodes is thus

U =
nðNÞ
N

= 1 � e� 1
c +

S � 1

N
: (Equation 5)

As shown in Figure 2D, the simulation in random RNs with manipulated ICs suggests the rapid decrease of

navigability as predicted. Impressively, with even one IC inserted, the navigability dramatically drops to

14.19%. With more ICs being inserted, the navigability further decreases. Therefore, we conclude that

the existence of ICs largely causes to the poor navigability of RNs.

Mechanism to form ICs

Though it is very likely that links in empirical RNs connect similar objects, we do not know the exact mech-

anism underlying empirical RNs. Therefore, we next generate RNs by implementing mainstream recom-

mendation algorithms based on datasets of real user-object interactions. We consider four real datasets

(Steam, Yelp, Epinions, and MovieLens, see method details), each of which can be described by a bipartite

network GBðU;O;EBÞ where U = fu1;u2;/;uMg is the set of users,O = fo1;o2;/;oNg is the set of objects,

and EB is the set of links between users and objects.38,39 According to many widely applied similarity-based

recommendation techniques, a recommendation networkG can be generated by linking each object to its

top-L most similar objects with pairwise similarity being defined based on GB. We adopt the common

neighbor index40–42

sab =
X
u˛U

buabub + e; (Equation 6)

where e/0 is a tiny random number used to remove degeneracy caused by same similarity scores and

BðM3NÞ is the adjacency matrix of GB with buo = 1 if user u connects with object o and buo = 0 otherwise.

Analogous to the empirical RNs, all four derived RNs have heavy-tailed in-degree distributions (see Fig-

ure 3A), suggesting that the similarity-based recommendation technique tends to emphasis on some
4 iScience 26, 105893, January 20, 2023



A B

Figure 3. Structural efficiency of derived RNs

(A) Binned in-degree distributions and (B) Number of distinct nodes being visited during randomwalks in the derived RNs

for L = 5.
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particular objects, making them frequently recommended. A few ICs also emerged in derived RNs. Though

generally with very small sizes (Table S2), these ICs monopolize a significantly large amount of traffic (see

Table 1). In particular, as shown in Figure 3B, derived RNs have much lower navigabilities in comparison

with random RNs. AnN-steps random walk can only find 0.06%, 0.09%, 0.05%, and 0.03% objects in Steam,

Yelp, Epinions, and MovieLens RNs respectively.

The results for other well-known similarity indices are close (see Table S3 for results of Jaccard index,41,42

Salton index,41,42 and heat conduction index17,43). In a word, the similarity-based recommendation algo-

rithms can generate ICs and thus lead to poor navigability.

Flexible recommendation

A possible cause of ICs is the similarity reciprocity (i.e., if a is among the most similar objects to b, then b is

likely among the most similar objects to a) and similarity transitivity (i.e., if both a and b are among the most

similar objects to g, then a and b are likely to be very similar to each other). This subsequently leads to the

formation of local clusters if we simply pick up the top-L most similar objects to construct the RN, and ICs

are an extreme type of such clusters. To break ICs and thus improve navigability, we suggest a flexible

recommendation strategy that selects the L recommended objects of each object from its top-lL (l> 1)

most similar objects (see Figure 4A for an illustration). As shown in Figures 4B, S6, and S7, the increasing

l quickly reduces ICs and largely improves navigability. Meanwhile, we should also consider the effect of

l on the ability to hit a user’s interest. To quantify such ability, in each user-object interaction dataset, users

are randomly divided into a training group and a testing group, and only the information of training users is

used to construct the RN. Each testing user u then performs a randomwalk starting from one of u’s selected

objects. After t steps, the hit rate of u’s interest is

ruðtÞ = huðtÞ = ðku � 1Þ; (Equation 7)

where ku is the number of selected objects of u (i.e., the degree of u in the original user-object bipartite

network) and huðtÞ is the number of visited objects among the ku � 1 selected objects (except for the start-

ing object) during the t-step random walk. The overall retrieval accuracy rðtÞ is the average of hit rates over

all testing users. As shown in Figure 4C and Figure S8, the optimal value of lsubject to the largest rðtÞ is
larger than 1 unless t is very small, and there exists a huge area in the ðl; tÞ plane wherein the navigability

and retrieval accuracy can be simultaneously improved.

We further tested whether the flexible recommendation strategy is effective in a real scenario of online nav-

igation. The experiment was carried out in AiQiYi (NASDAQ: IQ), the largest video website in China with

about 1:53108 daily active users and 53108 monthly active users (about 2/3 users use mobile app). To fill

a recommendation position, relevant videos are selected by a series of recall algorithms from all candidates

and then sorted by a ranking model. The top item that can pass the final regulation (to filter out violent,

porno, and brand-conflicting videos) will be exhibited (see Figure S10 for an illustration of the structure

of AiQiYi’s recommender system). The item-based collaborative filtering (ICF) is a major recall algorithm,

which finds out the most relevant videos according to recently clicked videos of the target user. Upon each
iScience 26, 105893, January 20, 2023 5
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Figure 4. Efficacy of the flexible recommendation strategy

(A) Illustration of the flexible recommendation strategy, where the target object randomly recommends L objects from the pool of lL most similar ones.

(B) Navigabilities of the four derived RNs with different l.

(C) Heatmaps for retrieval accuracy in the ðl; tÞ plane, where the black solid curves mark the areas with improved accuracy. The red dashed lines indicate the

optimal l subject to the highest accuracy. The results reported in (B) and (C) are obtained based on the common neighbor index and a 90%–10% division of

the training and testing groups. For each dataset, given the flexibility l, the navigability is averaged over 100 realizations of RNs, and for each RN, the result is

averaged overN random walk experiments with each node being once the starting node. The error bars in (B) are standard deviations of navigability accross

different independent experiments. The retrieval accuracy is also averaged over 100 realizations of RNs, and for each RN, 5 independent random walk

experiments are carried out for each pair of a testing user and a starting object.
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request, the original ICF returns the top-5 most relevant videos. In our experiment, for users in the treat-

ment group, it randomly returns 5 videos from the top-10 most relevant ones, analogous to the flexible

recommendation strategy with l = 2. The experiment was conducted in the first two positions of theGuess

You Like column on the landing page, which are the hottest positions attracting about 1:53108 clicks from

about 83107 distinct users per day. To evaluate the performance, we employ two widely used metrics in

industry, playing rate (PR) and playing duration (PD). The former is the ratio of playing to clicking of recom-

mended videos, and the latter is the average playing duration (see method details). The experiment lasted

one week fromNovember 3 to November 9 in 2020 (daily results are presented in Table S4), with average PR

and PD over seven days being 73.22% and 61.37min for the treatment group (5% users, randomly selected),

and 73.12% and 61.33 min for the control group (95% users). Our experiment only made a minute alteration

of an elaborately designed and well trained recommender system in industry but brought about 150,000

more video plays per day (the change of PR is statistically significant, see t-test in method details), indi-

cating the effectiveness of the flexible recommendation strategy.
DISCUSSION

Despite ongoing and heated debates on the harm of ICs,11,25–31 a formal definition of IC is lacking. The pri-

mary contribution of this paper is to provide a mathematically explicit definition of IC, and to demonstrate

the existence and notably negative impact on the navigability of ICs in both empirical and derived recom-

mendation networks. The definition may appear to be too strict and thus less applicable; however, based

on the essence of our research, it can be extended to characterize more generalized substructures of

directed networks. For example, the extent a strongly connected subgraphG½C� induced by a node set

C is likely to form an IC can be measured by its escaping probability peðCÞ, defined as the ratio of escaping

links (i.e., links from nodes in C to nodes outside C) to all links starting from nodes in C. Then, a strongly

connected subgraph with a pe no more than a preset threshold can be treated as a quasi-IC (QIC, see Fig-

ure S11). Such an escaping probability of QIC is also closely linked with the system navigability (see method

details), which improves the explanation power. For example, as shown in Figure S12, the two QICs in Yelp,
6 iScience 26, 105893, January 20, 2023
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respectively of escaping probabilities 0.0111 and 0.0118, dominate 71.86% of the random walk traffic. The

remarkably lower IC traffic of Yelp in Table 1 can thus be well explained.

Similarity based recommendation algorithms used to be popular and are still important modules in indus-

trial recommender systems up to date.32,44 Present simulations on similarity-based algorithms indicate that

recommender systems, by nature of their design, tend to insulate users from exposure to diverse content.

Recent ethical studies19,45,46 have noticed this issue and suggested the avoidance of filter bubbles as

a high-priority task in designing or improving recommender systems, but they do not provide a viable

pathway toward the target. Relevant acts and regulations emphasize algorithmic transparency (see

Algorithmic Justice and Online Platform Transparency Act, as a bill in the Senate of the United States)

and users’ rights in shutting down recommending services and deleting part or all of personalized tags

(see Management Regulations on Algorithmic Recommendations in Internet Information Services,

proposed by the Cyberspace Administration of China). However, these rules cannot save us from ICs

because filter bubbles are not resulted from opacity and users are usually not aware of (or even enjoying)

biased information. What is worse is that such acts and regulations, if not being rightly applied, may reduce

our benefits from algorithms underlying online navigation. Different from known ethical suggestions and

legal rules, our results indicate that IC-related problems can be well addressed inside the algorithmic

framework, using the proposed flexible strategy or other alternatives.17,47,48 By deploying mathematical

concepts, quantitative analyses, and computational tools, this paper describes, characterizes, and solves

IC-related problems, which also provides a referential framework to other problems related to technical

ethics.
Limitations of the study

Filter bubbles could have various causes and representations, and are not necessarily limited to object

networks as studied in the present paper. For example, on the landing page of individual users (instead

of when visiting a particular object), a filter bubble could be created by personalised recommendations,

containing limited and biased objects, according to the system’s evaluation on the target user’s interest.

The ICs in the present paper, on the other hand, are only an extreme form of filter bubbles in a particular

scenario (surfing the recommendation network), which can be mathematically defined and evaluated.

Algorithmic solutions for general forms of filter bubbles thus still need further research attention.

Owing to the diverse contexts considered (e.g., research articles, books, products), this study has only

focused on the efficiency of the system to enable access to more objects. We perform a small-scale

experiment with the Science dataset to illustrate that ICs are very likely to be formed by objects with

similar content. For any two research articles, i and j, their content similarity can be reflected by the ratio

of co-words in their titles, calculated as R = wc
ij=ðwi +wj � wc

ij Þ, where wi and wj are the number of

distinct words in i’s and j’s title, and wc
ij is the number of co-words between the titles of i and j. Punctu-

ations and stop words (e.g., ‘‘we’’, ‘‘in’’, ‘‘can’’) are not considered. Calculations based on 105 randomly

sampled article pairs reveal that the average co-word ratio of the pairs without recommendation relation

is 0.0026, whereas that of the recommended article pairs is 0.0194. Such a result suggests that each ob-

ject tends to recommend others with very similar content. As a consequence, the objects in the same IC

tend have also similar content. Accordingly, the content homogeneity of the accessed objects during

surfing in recommendation networks shall be explored in future research, which could potentially enrich

the understanding of the impact of recommendation algorithms on not only the limited but also the

biased information access.
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32. Lü, L., Medo, M., Yeung, C.H., Zhang, Y.C.,
Zhang, Z.K., and Zhou, T. (2012).
Recommender systems. Phys. Rep. 519, 1–49.

33. Oestreicher-Singer, G., and Sundararajan, A.
(2012). Recommendation networks and the
long tail of electronic commerce. MIS Q.
36, 65–83.

34. Kumar, A., and Hosanagar, K. (2019).
Measuring the value of recommendation links
on product demand. Inf. Syst. Res. 30,
819–838.

35. Masuda, N., Porter, M.A., and Lambiotte, R.
(2017). Random walks and diffusion on
networks. Phys. Rep. 716–717, 1–58.

36. De Domenico, M., Solé-Ribalta, A., Gómez,
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Data and code availability

d Data of empirical recommendation networks and user-object bipartite networks have been deposited at
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table. The experimental data of AiQiYi is not openly accessible due to privacy concerns.
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d Any additional information required to reanalyze the data reported in this paper is available from the

lead contact upon request.
METHOD DETAILS

Collection of empirical recommendation networks

In many online content systems, each object (e.g., product, article, movie, etc.) is presented on a desig-

nated webpage. In such a webpage, in addition to the primary description, a recommendation list is usually

displayed on the side or the bottom, showcasing some other objects which are most relevant or similar to

the current one (Figure S1). Such a recommendation list is entitled "recommended articles from TrendMD"

on the Science website, "we recommend" on the PNAS website, and "customers who bought this item also

bought" on the Amazon website. We extract these recommendation hyperlinks (URL links) via a self-devel-

oped python-based web crawler to construct the empirical recommendation networks (RNs).33,34 Specif-

ically, we adopt a breadth-first search strategy (snowball sampling) to extract empirical RNs. Firstly, a set

of seeds (initial objects) are selected. For each seed, we collect all the objects in its recommendation list

with hyperlinks. The recommendation lists of the newly-collected objects will be further collected. Such
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a process goes on for a certain number of steps, and then we have the corresponding RN. The employed

breadth-first search strategy guarantees the complete structure among the sampled nodes. Accordingly,

all ICs within the node sample are identifiable. Next, we introduce more details of data collection for

Science, PNAS, and Amazon RNs respectively.

Science recommendation network

The five research articles from Science Volume 369, Issue 6509 (2020) are selected to be the seeds. The

breadth-first search starts from these seeds following the recommendation hyperlinks in the list entitled

"recommended articles from TrendMD" (Figure S1). A recommendation list normally consists of ten rele-

vant articles, which are not all from Science. As articles in other journals may not have recommendation lists,

we only focus on the internal recommendations. There are normally up to five internal recommendations

(see Figure S2 for the out-degree distribution). The search stops after 35 steps, when no further new articles

can be found. Considering the later random walk experiments, we remove articles that have no out-going

links. The finalized Science RN, extracted during 11-14 September, 2020, consists of 7,730 articles and

26,338 directed hyperlinks. The Science RN is relatively small in size because articles published prior to

2015 do not have recommendation lists, perhaps due to the late implementation of the recommender

system.

PNAS recommendation network

We select the three articles from the Physics and Statistics section of the PNAS Volume 116, No. 12 (2019) as

the seeds. Starting from these seeds, the hyperlinks in "we recommend" list (Figure S1) that point to PNAS

articles are collected. The breadth-first search continues for 11 steps. In PNAS, each article has five internal

recommendations. However, recommendations of new articles encountered in the last step are not taken

into consideration. Therefore, after the removal of articles without out-going links, some articles’ degrees

are less than five (see out-degree distribution in Figure S2). Eventually, the PNAS RN consists of 59,479 ar-

ticles and 261,394 recommendation hyperlinks. The PNAS RN was collected during the period of 26 March

to 12 April, 2019.

Amazon recommendation network

Amazon’s ‘‘customers who bought this item also bought’’ list is probably the most well-known RN. We first

select the top-three kindle books from the bestseller list (assessed on 3 April, 2019) as the seeds. Starting

from each seed, a search is performed following the recommendation hyperlinks. For each product,

Amazon normally provides 100 recommendations, which are displayed on different pages. Depending

on the window size of the web browser, there are normally 3 to 8 recommendations displayed on each

PAGE (see Figure 1A). One needs to turn to the next PAGE to check the following recommendations.

For each kindle book, we collect its top-five recommendations due to the following considerations:

(i) customers would pay most attention to the recommendations on the first PAGE; 52(ii) the computational

complexity would be sharply increased if more recommendations are considered. We skip recommenda-

tion hyperlinks to other kinds of products and only collect kindle books from the recommendation lists

(actually, recommendations of kindle books are mostly also kindle books). Such search continues for 16

steps. For the kindle books newly collected at the last step, we go through their full recommendation lists

to find hyperlinks connecting to an existing kindle book as possible. At last, the kindle books with out-de-

grees of 0 or 1 are removed. The out-degree distribution of the finalized network is shown in Figure S2,

where most kindle books are of out-degree 5. The Amazon RN, extracted during April 2019, consists of

119,636 kindle books and 584,093 recommendation hyperlinks.
Strategy for identification of information cocoons

According to the definition, an information cocoon (IC) is an induced subgraph of an RN that satisfies two

criteria: (i) it is strongly connected; and (ii) its nodes do not have any directed link pointing to external

nodes.

We first find all potential ICs by employing a breadth-first search starting from every node. Taking a small

network as an example (Figure S3), if we start from node 6, the first step of the search will find node 1 and

node 3, and in the second step node 2 will be found. Then the search cannot find any new nodes, namely no

out-going links pointing to an unfound node. The search from node 6 returns a potential IC f6; 1; 2; 3g.
Analogously, searches starting from all nodes return four potential ICs (searches may return the same
iScience 26, 105893, January 20, 2023 11
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results), say f1;2;3g, f4;1;2;3g;f5;4;1;2;3g, and f6;1;2;3g. Obviously, all potential ICs satisfy the second

criterion. Next, we check the first criterion. To do so, we calculate the reachability matrix TN3N of the

RN, which describes the transitive closure between any pair of nodes through the directed links, namely

Tij = 1 if there is a directed path from node i to node j, and Tij = 0 otherwise. A potential IC with a node

set C can be confirmed as an actual IC only if
Q

i˛C;j˛CTij = 1. To reduce the computational complexity,

the potential ICs can be ranked in terms of size, and the above examination can start from the smallest

ones. If a potential IC passes the above examination, all its supersets of nodes can be directly falsified, since

there is no link from an IC node to an external node.

Datasets of user-object interactions

To test whether similarity-based recommendation techniques will lead to the emergence of ICs, we derive

and analyze four RNs by disparate similarity-based algorithms, based on four real-world user-object inter-

action datasets. The Steam dataset consists of 5,094,082 records of 87,626 users purchasing 10,978 video

games.49 The Yelp dataset (downloaded from www.yelp.co.uk/dataset_challenge) consists of 1,569,264 re-

views posted by 366,715 users on 60,785 local businesses (e.g., restaurants, bars, etc.). The Epinionsdataset

consists of 586,359 reviews posted by 39,588 users on 61,273 products.50 The MovieLensdataset consists of

22,884,377 ratings by 247,753 users to 33,670 movies.51 The above four datasets are naturally described by

bipartite networks. The distributions of user degrees and object degrees are reported in Figure S4, both

exhibiting heavy-tailed patterns.

Extended similarity indices.

Besides the Common Neighbor index, we have also tested other three widely applied similarity indices,

namely the Jaccardindex,40,41 Salton index,40,41 and Heat Conduction index.16,42Jaccard similarity calcu-

lates the similarity between two objects a and b as

sJACab =

P
u˛U

bua,bub

ka + kb � P
u˛U

bua,bub
+ e; (Equation 8)

where e/0 is a tiny randomnumber used to eliminate degeneracy caused by the same similarity scores, and

ka and kb are object degrees of a and b. In the Jaccard index, the similarity between a pair of large-degree

objects is depressed in comparison with the Common Neighbor index. Salton index reads

sSALab =

P
u˛U

bua,bubffiffiffiffiffiffiffiffiffi
kakb

p + e; (Equation 9)

with a slightly different way to penalize large-scale objects. The Heat Conduction index is defined as

sHCab =
1

kb

X
u˛U

bua,bub

ku
+ e; (Equation 10)

where ku is the user degree of u. Notice that, the Heat Conduction index is asymmetric and it penalizes not

only large-degree objects, but also large-degree users.

We apply Jaccard, Salton, and Heat Conduction indices to construct RNs from the four datasets respec-

tively with L = 5. The results are reported in Figure S5. Analogous to the Common Neighbor index,

RNs derived by the above three similarity indices are all largely unnavigable. An exception is the Yelp

RN derived by the Heat Conduction index, whose navigability (U = 2:74%) is significantly higher than other

RNs. Yet, it is still far lower than the expected value for randomRNs (U = 63:21%). Similar to the case for the

CommonNeighbor index, the low navigability of these derived RNs is resulted from ICs, which monopolize

the traffic of the random walk, as reported in Table S3.

Setting and results of the online experiment

We have tested a variant of the flexible recommendation strategy on the video streaming system AiQiYi

(www.iqiyi.com, NASDAQ:IQ). Our experiment was employed in themobile application of AiQiYi (a screen-

shot is shown in Figure S9), which attracts on average about 13108 daily active users, who open the appli-

cation and have at least one clicking or scrolling action. Among these active users, about 80% will play at

least one video, and about 40% of video plays are evoked by machine-generated recommendations. The
12 iScience 26, 105893, January 20, 2023
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recommender system of AiQiYi is thus regarded as very influential on users’ information accessing

behavior. Therefore, AiQiYi is an ideal platform for our experiment.

The most important and attractive recommendation module of AiQiYi mobile application is the list of

‘‘Guess YouLike’’, displayed on the landing PAGE, as shown in Figure S9. The corresponding recommen-

dations are generated by a sophisticated recommender system, with the fundamental structure shown in

Figure S10. It employs multiple recall algorithms, each of which operates independently to identify a set of

videos that are most likely to fit the target user’s interests. All these selected videos will go through a grand

ranking model to generate a list of relevant videos. A regulation module is then used to filter out videos

with violent, porno, or brand-conflicting content. The most relevant videos that passed such regulation

filtering constitute the final recommendation list, which will be displayed in ‘‘Guess YouLike’’.

The recall algorithms are diverse, including not only personalised algorithms like item-based and user-

based collaborative filtering, but also less-personalised approaches such as the global or regional trending

list to identify the most popular videos. The item-based collaborative filtering (ICF) is one of the most

important recall algorithms in the AiQiYi recommender system. ICF calculates similarities among videos

according to all users’ co-accessing (e.g., co-clicking, co-playing, etc.) activities, and that two videos are

generally more similar to each other if many users have clicked and/or played both of them. ICF will identify

a set of videos that are most similar to the target user’s recently clicked/played videos.

In our experiment, 5% randomly selected users (about 43106 users on weekdays, and 53106 users on week-

ends) are regarded as treatment users. For such users, we apply the flexible recommendation strategy to

the ICF module. Specifically speaking, for the 5% treatment users, ICF will randomly select 5 videos from

the top 10 most similar ones (corresponding to l = 2), while for the 95% control users, ICF will directly

select the top 5 most similar ones.

We use two metrics to evaluate the experimental performance. The playing rate (PR) is the number of play-

ings on recommended videos divided by the number of clicks on these recommendations. PR describes

that among all clicked recommendations, how many are actually watched. This metric is widely applied

in industry since it well reflects how the recommendations fit users’ true interests. On the landing PAGE

(Figure S9), there is only a thumbnail poster for each recommended video, which may be not enough for

the target user to decide for playing or not. If the target user clicks the recommended video, more infor-

mation will be exhibited, such as the summary of the video, the producer and director of the video, the

number of cumulative playings, and so on. The target user could choose to play the video or go back to

the landing PAGE. This is to say, in the real scenario, clickings do not necessarily mean success, and to click

but not to play usually implies not-so-good user experiences. Therefore, PR is better to measure the quality

of recommendations than the clicking rate. Another metric, named playing duration (PD), is defined as the

average playing duration over all played recommendations. PD can be regarded as a metric for a deeper

level of user satisfaction: whether they prefer to watch for a long duration or drop out quickly. In addition,

PD is commercially meaningful as longer playing corresponding to more advertisements.

The experiment was performed in AiQiYi mobile application from November 3rd to November 9th 2020,

covering a full week. The daily results are reported in Table S4. The PR of the treatment group is higher

than that of the control group in every day, indicating that the flexible strategy can indeed improve the

fitting to users’ interests. A two-sample paired t-test is further applied to the PR values of the treatment

and control group with a null hypothesis of the equal mean. The p-value of such a test is 0.0082, indicating

that the PR values of the two groups significantly differ from each other. However, the p-value of t-test on

PD is 0.4715, suggesting that such improvement is not significant. As a conclusion, the flexible recommen-

dation strategy can significantly promote the likelihood of users to play the recommended videos, but will

not make much difference in the average duration of those plays.

The improvement in PR seems to be minor, but it largely reflects the effectiveness of the flexible recom-

mendation strategy due to the following reasons. (i) The original AiQiYi recommender system is elaborately

designed and well-trained to optimize PR and PD. Accordingly, any tiny improvement is not easy. (ii) The

AiQiYi recommender system consists of a series of recall algorithms, but we only apply the flexible strategy

to one of them. As there are many recall algorithms, it is not surprising that the eventual differences are
iScience 26, 105893, January 20, 2023 13
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minor. With these reasons considered, the significance of PR improvement as indicated by the t-test

demonstrates the efficacy of the proposed flexible strategy.

Quasi information cocoons

To promote the applicability of the strictly-defined IC, we relax the definition to consider the so-called

quasi information cocoon (quasi-IC or QIC for short), which is a set of strongly connected nodes with

very few links pointing to outside nodes. Figure S11 shows a typical example. Similar to the case of ICs,

nodes belonging to QICs are called QIC nodes, links from non-IC nodes to QIC nodes are trapping links,

and links from QIC nodes to non-IC nodes are escaping links.

Consider an RN GðV ;EÞ, where V is a set of N nodes and E is the set of directed links which can be charac-

terized by an adjacency matrix A = faijg where aij = 1 if node i has a directed link pointing to j and aij = 0

otherwise. Given a subset C4V , the escaping probability of the node set C can be defined as the ratio

between its escaping links and total out-going links, say,

peðCÞ =

P
i˛C;j;C

aij
P
i˛C

kouti

; (Equation 11)

with kouti being the out-degree of node i. An induced subgraph G½C� is a QIC if G½C� is strongly connected
and peðCÞ is no larger than a predefined threshold pe

c . Meanwhile, the trapping probability of a QIC can be

defined as the ratio between its trapping links and total links originating from non-QIC nodes, that is,

ptðCÞ =

P
i;C;j˛C

aij
P
i;C

kout
i

: (Equation 12)

While calculating the expected navigability for network with ICs (Equation 4 and 5), we have assumed that

pt = c=N. This is based on the assumption that the in-degrees of nodes are uniformly distributed. Howev-

er, the in-degree distributions of empirical and derived RNs are with heavy-tailed distributions. Meanwhile,

ICs, or QICs, with large in-degrees would have a much stronger impact on navigability, because of the

higher chance of falling into the IC or QIC. Thus, we consider also the trapping probability to reflect the

varied in-degrees of QIC nodes.

The impact of QICs on navigability in random RNs can also be analyzed. Suppose in a random RN with N

nodes, there is a number of QICs with in total c QIC nodes. The QICs have an average escaping probability

pe, while the summation of their trapping probabilities is pt . A randomly surfing user has a probability of pt

to visit a QIC node at every step, and thus the expected number of steps until the user falling into the QICis

Cs0D = 1=pt . In other words, for a user who starts the randomwalk from a non-QIC node, it takes Cs0D steps to
fall into the QIC. When within the QIC, the user has a probability pe to escape at every step, and thus the

expected number of steps to escape the QICis CscD = 1=pe. After that, the user could fall into the QIC for

the second time, third time, and so on. The number of cycles of getting out and in the QIC within N steps

can be thus calculated as

K =
N � Cs0D
CscD+ Cs0D

=

�
N � 1

�
pt
�
pept

pe +pt
: (Equation 13)

The expected number of effective steps of the random walk, which is defined as the steps outside QIC, can

be written as

CseD = ðK + 1Þ Cs0D =

�
N � 1

�
pt
�
pe

pe +pt
+
1

pt
: (Equation 14)

For such effective steps, the number of distinct nodes that could be visited is given by Equation 2. For the

steps within the QIC, the number of distinct nodes that could be visited is approximately S � 1, where S

represents the size of the visited QIC, when the escaping probability is very low. Accordingly, the expected

number of distinct nodes being visited during an N-step random walk is the summation of such two parts,

and the navigability is thus,

U =
nðt = CseDÞ+ S � 1

N
= 1 � e� CseD=N +

S � 1

N
: (Equation 15)
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Such a prediction is actually in line with the prediction for RNs with ICs (Equation 5). If we simplify trapping

probability as pt = c=N, the above equation can be updated as

U
�
pt =

c

N

�
= 1 � e

� 1
c

�
1+

Npe ðc� 1Þ
Npe + c

	
+
S � 1

N
: (Equation 16)

For ICs, the escaping probability is pe = 0, which gives us

U
�
pt =

c

N
;pe = 0

�
= 1 � e� 1

c +
S � 1

N
; (Equation 17)

reproducing Equation 5.

To validate such prediction, we simulate random walks in random RNs with QICs, the results of which are

reported in Figure S13. In general, QICs with low escaping probabilities and high trapping probabilities

have stronger impacts on navigability. The simulation results well follow the predictions as specified by

Equation 15 especially when the trapping probability is high and escaping probability is low. When the

QIC has a trapping probability pt = 0, the RN can be regarded as IC-free (also QIC-free), and thus the

navigability is as high as 58.71%, regardless of the escaping probability. For any non-zero trapping

probabilities, a QIC with low escaping probability has a severe impact on navigability. On the other

hand, the increase in the trapping probability would also make the RN unnavigable.
iScience 26, 105893, January 20, 2023 15
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