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Abstract

Background: Continuous glucose monitoring (CGM) for diabetes combines noninvasive glucose biosensors, continuous
monitoring, cloud computing, and analytics to connect and simulate a hospital setting in a person’s home. CGM systems inspired
analytics methods to measure glycemic variability (GV), but existing GV analytics methods disregard glucose trends and patterns;
hence, they fail to capture entire temporal patterns and do not provide granular insights about glucose fluctuations.

Objective: This study aimed to propose a machine learning–based framework for blood glucose fluctuation pattern recognition,
which enables a more comprehensive representation of GV profiles that could present detailed fluctuation information, be easily
understood by clinicians, and provide insights about patient groups based on time in blood fluctuation patterns.

Methods: Overall, 1.5 million measurements from 126 patients in the United Kingdom with type 1 diabetes mellitus (T1DM)
were collected, and prevalent blood fluctuation patterns were extracted using dynamic time warping. The patterns were further
validated in 225 patients in the United States with T1DM. Hierarchical clustering was then applied on time in patterns to form 4
clusters of patients. Patient groups were compared using statistical analysis.

Results: In total, 6 patterns depicting distinctive glucose levels and trends were identified and validated, based on which 4 GV
profiles of patients with T1DM were found. They were significantly different in terms of glycemic statuses such as diabetes
duration (P=.04), glycated hemoglobin level (P<.001), and time in range (P<.001) and thus had different management needs.

Conclusions: The proposed method can analytically extract existing blood fluctuation patterns from CGM data. Thus, time in
patterns can capture a rich view of patients’ GV profile. Its conceptual resemblance with time in range, along with rich blood
fluctuation details, makes it more scalable, accessible, and informative to clinicians.

(JMIR AI 2023;2:e45450) doi: 10.2196/45450
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Introduction

Background
Diabetes mellitus (DM) is a lifelong condition owing to elevated
glucose concentration in blood and has long been a major global
public health issue. According to the International Diabetes
Federation, the number of people with diabetes has risen from
151 million in 2000 to 537 million in 2021 and is projected to
reach 783 million by 2045 [1]. The World Health Organization
estimated that 1.5 million deaths were directly caused by
diabetes in 2019, making it the ninth leading cause of death [2].
Before the introduction of smart and connected health and hence
continuous glucose monitoring (CGM) wearable devices,
self-monitoring of blood glucose (BG) level played a crucial
role in the management of patients with DM. However, a
landmark paper in 2008 revealed that patients rarely measured
glucose levels after meals or overnight, which led to postprandial
hyperglycemia within the group of patients [3]. Results from a
multicenter randomized control trial further illustrated that the
use of CGM is associated with improved glycemic control in
adults with type 1 DM (T1DM). CGM for diabetes combines
noninvasive glucose biosensors, continuous monitoring, cloud
computing, and analytics to connect and simulate a hospital
setting in a person’s home. It uses sensors to measure glucose
levels just beneath the surface of the skin and sends data
wirelessly to the users’ compatible smart device or receiver [4].
CGM works as a connected and closed-loop system that enables
patients to modify their insulin dosages based on their glucose
trends in a timely manner. With the advancement of technology,
CGM has become much more accurate and assessable, making
it a vital tool for patients with DM to manage their BG level.
According to a survey in 2019, the percentage of CGM users
with T1DM in the US T1D Exchange registry has increased
from 7% in 2010 to 30% in 2018 [5]. A systematic review and
meta-analysis in 2019 concluded that the use of CGM over
self-monitoring is beneficial in terms of several clinical
outcomes [6].

Average BG to Glycemic Variability
As suggested by Huisman et al [7] and characterized by
Bookchin and Gallop [8], glycated hemoglobin (HbA1c) level
has been the gold standard for testing BG intensity and defining
diabetes since its proposal. It is a measure of average glucose
within a person over the previous 8 to 12 weeks [9] and has
been adopted by major clinical guidelines for managing the
glycemic status of patients with T1DM and diagnosing and
screening people who are at risk of type 2 DM [10-12].

The introduction of CGM opened up new areas of research for
BG control owing to the sheer volume of BG data it collects.
Despite the well-recognized evidence and wide use of HbA1c

level, there has been increasing research interest in glycemic
variability (GV), which is based on CGM data, arguing that GV
contains additional diagnostic and prognostic value that could
not be fully captured by HbA1c measurement. BG variability,
also known as GV, refers to the degree of oscillation in BG
levels [13]. Patients with diabetes often rely heavily on
continuous medication intake to maintain BG at a normal and
stable level. However, this is often difficult as food consumption

would lead to a spike in BG, whereas the use of excessively
intensive medication could lead to hypoglycemia. As HbA1c

measurement fails to effectively capture these oscillations,
HbA1c level alone is not an ideal indicator of an individual
patient’s glycemic control [14]. Studies have been conducted
to evaluate the diagnostic and prognostic value of GV. It is
shown that high GV is associated with high risk of
microvascular and macrovascular complications [15,16], high
mortality in patients who are critically ill [17-19], and high
incidence of neurological outcomes [20]. A systematic review
and meta-analysis conducted by Gorst et al [21] indicated that
high GV is associated with increased risk of renal disease,
cardiovascular events, retinopathy, ulceration, and mortality.

Quantifying GV
Several methods have been proposed to capture GV from CGM
data. SD and coefficient of variation (COV) are the 2 most
prevalent metrics in the field owing to their ease of calculation
and relative understandability. However, they are often criticized
as a statistically biased metric to represent GV because BG
readings do not follow a normal distribution and tend to skew
toward hyperglycemia, especially in patients with diabetes
[22,23]. In addition, they do not incorporate the information
about time and sequences of readings in their calculations. As
such, even if one randomly reorders a set of BG readings to
obtain drastically different glycemic curves, the SD and COV
would still remain the same.

Time in range (TIR) has been proposed by existing studies as
a way to indirectly capture GV [24-29]. TIR refers to the daily
proportion of time one’s glucose level falls within given target
ranges with breakpoints typically at 3, 3.9, 10, and 13.9 mmol/L
[29]. The major strengths of TIR are that it can be readily
computed and it is much more intuitive to clinicians, while still,
to some extent, able to capture how much a person’s BG
deviates from the target range. So far, studies have shown that
TIR alone is associated with a wide range of outcomes, such as
diabetic retinopathy [26] and various neonatal outcomes [30].
A conference conducted in 2018 reached a consensus that
outlined the use of CGM and related glycemic metrics to
improve glucose management [27,28]. Despite the widely
recognized strengths of TIR, its aggregated nature inevitably
implies that temporal fluctuation information from CGM data
is left unused, which was shown to contain further prognostic
value. In particular, as TIR also disregards the order in which
the glucose measurements were made, it fails to provide details
about specific glycemic patterns that occurred in one’s CGM
history.

Most metrics fail to account for the sequences of BG
measurements without the use of sophisticated statistical or
machine learning models because that would involve
recognizing a trend or pattern within a time series of BG data.
Thus, machine learning models have also been proposed to
compute GV. Struble [31] and Marling et al [32] applied support
vector regression to model the data points from CGM and
computed GV based on the difference between actual and
modeled data points. Eljil et al [33] suggested the use of
time-sensitive artificial neural networks to predict hypoglycemic
events, whereas Mani et al [34] used random forest models to
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predict the risk of type 2 DM. Furthermore, Hall et al [35]
defined 3 glucose fluctuation patterns, namely low, medium,
and high variability, by using dynamic time warping (DTW).
A list of analytic methods and metrics for quantifying GV in
existing literature is summarized in Table 1. Although these

machine learning–based methods successfully used the temporal
information embedded in CGM data, they were criticized to be
“not well understood in clinical practice” [36], which remains
as a major hurdle that hinders clinicians from applying these
methods in practice.
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Table 1. Summary of metrics and analytics methods for assessing glycemic variability (GV).

LimitationsStrengthsRelated publicationsMetrics and analytic
methods

SimplicityKrinsley [19]SD • Tend to be skewed and does not adjust for mean BGa

level
• Does not account for temporal information
• Limited capability of interpreting GV profiles with

only a single value

Simplicity and adjusts
for mean

Rodbard [37] and Rama Chandran et
al [38]

COVb • Does not account for temporal information
• Limited capability of interpreting GV profiles with

only a single value

SimplicityOmar et al [24], Beck et al [25], Lu
et al [26], Beyond A1C Writing
Group [27], Battelino et al [28], and
Advani [29]

TIRc • Does not account for sequence of BG measurements

SimplicityMcDonnel et al [39]IQR • Does not adjust for mean BG level
• Does not account for temporal information
• Limited capability of interpreting GV profiles with

only a single value

SimplicityOh et al [20]Range • Tend to be skewed and does not adjust for mean BG
level

• Does not account for temporal information
• Limited capability of interpreting GV profiles with

only a single value

Takes BG fluctuation
owing to meal into ac-
count

Service [22] and Service et al [40]MAGEd • Day based
• Does not adjust for mean BG level
• Does not account for sequences of BG measurements
• Limited capability of interpreting GV profiles with

only a single value

Adjusts for BG skew-
ness and measuring fre-
quency

Kovatchev et al [41] and Hill et al
[42]

LBGIe and HBGIf • Does not account for sequences of BG measurements
• Ambiguities in BG variability level
• Limited capability of interpreting GV profiles with

only a single value

Accounts for temporal
information

Struble [31] and Marling et al [32]SVRg • Limited capability of interpreting GV profiles with
only 3 discrete levels

• Subject to clinicians’ experience in determining the
variability levels; thus, lack of evidence

Accounts for temporal
information

Eljil et al [33]TS-ANNh • Limited capability of interpreting GV profiles with
only a single value

Accounts for temporal
information

Mani et al [34]RFi • Limited capability of interpreting GV profiles with
only a single value

Accounts for temporal
information

Hall et al [35]Glucotypes • Limited capability of interpreting GV profiles with
only 3 discrete levels

aBG: blood glucose.
bCOV: coefficient of variation.
cTIR: time in range.
dMAGE: mean amplitude of glycemic excursions.
eLBGI: low blood glucose index.
fHBGI: high blood glucose index.
gSVR: support vector regression.
hTS-ANN: time-sensitive artificial neural network.
iRF: random forest.

JMIR AI 2023 | vol. 2 | e45450 | p. 4https://ai.jmir.org/2023/1/e45450
(page number not for citation purposes)

Chan et alJMIR AI

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Furthermore, there has been scalability issues in existing
CGM-related machine learning studies owing to the missingness
of key variables in real-world application. For example, in most
studies, participants are asked to manually log daily events (such
as meal, stress level, exercise, and illnesses) and wear a
wristband for collecting physiological data, which can
potentially provide insights about GV management [43].
However, in real-world health care, most of the time, only
routinely collected CGM and electronic patient record (EPR)
data would be available for clinicians to make decisions about
therapeutic pathways. A more scalable analytical framework is
warranted to make full use of CGM data and capture detailed
GV pattern to inform personalized therapeutic pathways.
Computationally simple methods such as COV and TIR tend
to show a narrow presentation of a patient’s GV profile but are
more recognized among clinicians and used in more clinical
studies. In contrast, despite being able to capture more
information from CGM data, complex machine learning–based
methods tend to be less intuitive for clinicians to apply in
practice. Moreover, existing methods often express GV profile
as a single value or a few discrete levels (usually high, medium,
or low) and do not reveal detailed insights about any GV patterns
that exist in the data.

In this study, we sought to address the scalability issues of
machine learning–based GV management and fill the gap
between the intuitiveness of simplistic methods, such as TIR,
and comprehensiveness of machine learning methods to
understand the underlying GV patterns in patients with T1DM
who have been using wearable CGM. The aim of this paper was
2-fold. First, we sought to develop a novel and scalable analytics
framework for efficient GV pattern recognition and attribution
that provides a more comprehensive, easy-to-understand
representation of a patient’s BG fluctuation profile, which cannot

be solely captured by clinically established metrics such as
HbA1c level and TIR. Second, we sought to propose the use of
time in patterns to depict GV profiles and show that it reveals
additional insights about CGM data and patient characteristics.
In the long run, we hope that having a rich and accessible
representation of GV profile could serve as a step toward
explainable artificial intelligence and the development of
personalized therapeutic pathways for patients with T1DM.

Methods

Overview
The analysis of this study entailed two major parts (Figure 1):
(1) extracting GV patterns from CGM and (2) clustering patients
based on time in GV patterns and evaluating the clusters. For
the first part, we gathered and filtered patients, extracted and
cleaned their CGM data from monitoring devices, and then
applied a machine learning algorithm called DTW. This enabled
us to classify the given CGM data within a time window into
one of the extracted patterns. In addition, we applied our
methods to another CGM data set to externally validate our
pattern extraction methods. In the second part, we computed
the time spent in each pattern per patient. Clinical variables
were gathered from EPR and clinical notes. Clustering methods
were further applied on time in patterns to demonstrate its
possible use cases by comparing the differences in clinical
variables across clusters of patients. Finally, we evaluated the
relationship between time in patterns developed using our
method and well-established glycemic metrics.

All analyses were performed using R (version 4.0.3; R Core
Team and the R Foundation for Statistical Computing), and the
R package dtwclust (version 5.5.12, Sarda-Espinosa) was used
for DTW-related analyses [44,45].
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Figure 1. Analytical framework for glycemic variability (GV) pattern extraction and patient clustering from continuous glucose monitoring (CGM)
data. DTW: dynamic time warping; EPR: electronic patient record.

Inclusion and Exclusion of Patients
All patients in this study attended the Centre for Diabetes and
Endocrinology of a large hospital in the United Kingdom. The
inclusion criteria included patients who (1) were diagnosed with
T1DM and (2) were given a CGM device named FreeStyle Libre
(FSL) before August 5, 2019, and had been using it for at least
one month. Patients aged <18 years or patients with unavailable
or missing National Health Service (NHS) identifiers were
excluded from this study. Of 130 patients with available CGM
data in FSL, 126 (96.9%) patients were included in this study.

Collection of CGM Data
FSL flash glucose monitoring system was used to measure the
interstitial fluid glucose level of included patients. It has been
verified by the National Institute for Health and Care Excellence
based on evidence from randomized controlled trials [46].
Patients were instructed by clinicians to use the device in
accordance with the flash glucose monitoring guidelines

suggested by NHS. When using FSL, patients continued to take
insulin according to their insulin regimes and type of insulin
they use. In addition, patients were arranged to have follow-up
consultations every 3 to 6 months, depending on their clinical
needs. Pragmatically, the glucose level was primarily measured
and recorded once every 15 minutes.

Apart from the FSL data set, CGM data from the REPLACE-BG
trial were used for external validation. The REPLACE-BG study
is a multicenter randomized trial to evaluate the stand-alone
effectiveness of CGM without confirmatory BG measurements
in 225 adults with well-controlled T1DM [47]. The trial was
chosen for external validation because it represented a patient
group that is similar and relevant to this study in 3 ways. First,
the REPLACE-BG cohort and our patient cohort both contained
patients with T1DM who were using CGM and undergoing
similar insulin treatment, which is an important inclusion
criterion in this study. Second, the REPLACE-BG trial was
conducted in the United States, whereas this study was
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conducted in the United Kingdom. The capability of our
proposed methods to be applied to patients with different
demographics can be tested. Third, as the REPLACE-BG trial
included more patients and CGM measurements, it enabled us
to validate our methods using a large sample size to demonstrate
scalability.

Retrieval and Preprocessing of Clinical Information
From Clinical Notes and EPR
The FSL CGM data set did not contain clinical variables that
are crucial to this analysis. Thus, clinical notes and EPR were
used as sources of clinical information by mapping the
participants’ NHS identifiers. All available clinical notes
between August 5, 2009, and August 5, 2019, were manually
reviewed, and the list of medication and diagnosis was extracted
for each patient. Then, the list of medication and diagnosis was
reviewed by clinicians at the Centre for Diabetes and
Endocrinology to categorize them for further analysis (Tables
S1 and S2 in Multimedia Appendix 1). In contrast, the latest
laboratory test results, including HbA1c level and estimated
glomerular filtration rate, were retrieved from the EPR.

GV Pattern Extraction With DTW
DTW was proposed by Berndt et al [48], and it aims to find
patterns in time-series data. The DTW model takes several
time-series data as input and outputs the time-series patterns
extracted and the type of pattern to which each series belongs.
The major strengths of DTW included its ability to handle
unevenly spaced time-series data, which is prevalent in CGM
data. Several researchers have applied DTW to discover clinical
insights such as the prognostic value in CGM data [35],
electrocardiograms [49], and genomic signals [50].

A few preprocessing steps were performed to transform the FSL
CGM data into inputs for the DTW model. First, if multiple
records were found within the same minute in the CGM data,
the median value was considered. Second, we divided the CGM
data of each patient into overlapping window periods. Any
window periods that had <4 measurements per hour on average
were discarded to improve model results. Third, hyperparameters
of the DTW model, specifically, the duration of each window
period and the percentage of overlap between consecutive
windows, were tuned. A grid search was performed from a
validation set over the 2 hyperparameters to determine the best
combination that optimizes a list of cluster validity indexes,
namely, Silhouette, Calinski-Harabasz, COP, and modified
Davies-Bouldin index. The search space for window duration
and overlap percentage were 120, 150, and 180 minutes and
0%, 25%, 50%, and 75%, respectively. The search space for
window duration was chosen such that the duration is sufficient
to capture the activity profile of rapid-acting insulin.

After determining the aforementioned hyperparameters, the
number of patterns to be extracted by the DTW model has to
be determined. A DTW model was trained for each of 3 to 8
patterns, and the models were compared. The optimal number
of patterns was determined by evaluating the total within-cluster
distance against the number of pattern graphs, which is also
known as the elbow method. Finally, GV patterns and the type
of pattern to which each series belongs were extracted from the

best-performing DTW model. To examine whether our method
can be generalized to other CGM data sets on patients with
T1DM, we applied the same preprocessing steps and
hyperparameters to the REPLACE-BG data set. The number of
patterns was determined similarly, and the resulting set of GV
patterns was compared with that from FSL data.

Hierarchical Clustering of Patients and Statistical
Analysis
Hierarchical clustering algorithm was used to cluster patients
with respect to time in patterns, so that no a priori information
about the number of clusters would be required [51]. The
occurrence of each pattern per patient was tallied and expressed
as a percentage of all patterns. Agglomerative hierarchical
clustering algorithm with complete linkage was applied on time
in patterns, and a dendrogram was plotted. A distance measure
specific to percentage data was used for computing the distance
matrix for hierarchical clustering instead of the conventional
Euclidean distance measure [52]. The number of patient clusters
was determined based on the greatest difference in the total
within-cluster distance from the dendrogram. Each patient was
assigned to one of the clusters for statistical analysis.

In statistical analysis, patient characteristics, including
demographics, laboratory test results, diagnoses, and
medications, were compared across patient clusters using
univariate analysis. Laboratory test results for HbA1c level and
estimated glomerular filtration rate were categorized into groups
and regarded as categorical variables in 2-tailed statistical tests.
ANOVA for continuous variables and chi-square test for
categorical or binary variables were performed, and the
corresponding P values were extracted. Missing values for each
variable were omitted from the computation of P value. P values
<.05 were considered as being statistically significant.

Ethics Approval
This study obtained ethics and data governance approval by the
Royal Berkshire NHS Foundation Trust under the reference
number A2901469.

Results

GV Patterns From DTW Model
A total of 1,590,443 CGM data points across 126 patients was
collected in this study. After hyperparameter tuning, it was
determined that 150 minutes was the optimal window duration
and 50% was the optimal overlap percentage. A comparison of
the cluster validity indexes is presented in Figure S1 in
Multimedia Appendix 1. This resulted in 149,639 window
periods (each 150-minute long) for training the DTW model.
By evaluating the graph of the total within-cluster distance
against the number of patterns, 6 was found to be the optimal
number of patterns. In contrast, GV patterns from the
REPLACE-BG data set were extracted with identical
configurations, resulting in 931,005 window periods and 5
patterns (Figures S2 and S3 in Multimedia Appendix 1).

The properties of the 6 GV patterns extracted from the FSL data
set are summarized in Table 2. Figure 2 presents several random
CGM samples from each pattern group. Results showed that
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patterns 1 and 2 represent glucose levels at approximately 3 to
6 mmol/L and 6 to 8 mmol/L, respectively, which mostly fall
within the target range. A slightly rising trend is also observed
in pattern 2. BG trends are also captured in patterns 3 and 4.
Pattern 3 represents a decline in BG from marginally
hyperglycemic to normal and is the only pattern that depicts an
obvious downward trend. In contrast, pattern 4 represents a
surge from marginally hyperglycemic to hyperglycemic. Most

of the CGM data belong to patterns 1 to 4, and each of them
accounts for approximately 20% of the data. Patterns 5 and 6
both represent less frequent hyperglycemic events at
approximately 14 to 19 mmol/L and 19 to 28 mmol/L,
respectively. Unlike the other 4 patterns, patterns 5 and 6 had
large spread and included different trends that generally falls
within their respective glucose levels. In other words, they can
include upward, downward, steady, or even parabolic trends.

Table 2. Summary of the 6 glycemic variability (GV) patterns extracted from FreeStyle Libre data set.

Occurrence (N=149,639), n (%)Pattern trendsGlucose levelGV pattern number

8440 (5.64)Steady or rising to peak and decliningSeverely hyperglycemic6

22,594 (15.10)Steady or concave up or downHyperglycemic5

28,653 (19.15)RisingFrom marginally hyperglycemic to hyperglycemic4

31,185 (20.84)DecliningFrom marginally hyperglycemic to normal3

30,255 (20.22)Steady or slightly risingNormal2

28,512 (19.05)Steady or concave upMarginally hypoglycemic or normal1

Figure 2. Glycemic variability patterns extracted from dynamic time warping model. Each gray line represents a random sample within the specific
pattern and data set, and one is highlighted in color. The dark gray line in each panel depicts the median of glycemic variability patterns extracted. FSL:
FreeStyle Libre.

External validation was performed on the REPLACE-BG data
set, and results are presented in Figure 2 and Figures S2 and S3
in Multimedia Appendix 1. It is observed that our methods were
able to generate a comparable set of GV patterns across the 2
data sets, specifically, patterns 1 to 5. Compared with FSL
patterns, the biggest difference in REPLACE-BG patterns is
the absence of pattern 6, which indicates severe fluctuations in
hyperglycemic events. This is likely owing to the difference in
inclusion and exclusion criteria between the 2 data sets. The
REPLACE-BG trial cohort deliberately included patients with
T1DM who were well controlled and excluded individuals with
substantial hypoglycemic events. Therefore, the REPLACE-BG
data set is only representative of the well-controlled T1DM
group and has limited generalizability to all patients with T1DM.
Given that the objective of this study was to generate a
comprehensive representation of GV profiles among all patients
with T1DM, all further analysis in this study was conducted
based on the 6 patterns from FSL data set.

Patient GV Profile Clusters Based on Time in Patterns
Hierarchical clustering was applied on time in GV patterns.
Overall, 4 clusters of patients were identified based on the
dendrogram (Figure 3). Most patients (74/126, 58.7%) belonged
to cluster A. Hyperglycemia fluctuation events occurred more
frequently among patients in clusters A and B. Moreover, the
time spent in GV patterns 1 and 2 for these patients was
relatively low. In particular, the 3.2% (4/126) patients in cluster
B spent much more time in GV pattern 6 than in all other
clusters. This demonstrates that their glucose level was very
poorly controlled and managed. In contrast, the glucose level
of patients in clusters C and D are more likely to fall into GV
patterns 1 and 2, which roughly resembles the target range.
However, patients in cluster C spent relatively more time in GV
patterns 3 and 4 when compared with patients in cluster D,
which indicates great fluctuation in glucose levels and high
likelihood of hyperglycemia events.
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Figure 3. Dendrogram in hierarchical clustering and heat map of time in patterns per patient. The left panel depicts the dendrogram in hierarchical
clustering. The 4 colored boxes represent 4 different patient clusters based on glycemic variability (GV) patterns. The right panel is a heat map that
depicts the underlying distribution of patterns across all patients. Each row represents a patient and each column represents 1 of the 6 extracted GV
patterns. Yellow color represents a relatively rare occurrence, and red color represents a relatively frequent occurrence.

Correlation Between GV-Based Clusters and Patient
Characteristics
Patient characteristics were compared across the 4 patient
clusters and are presented in Table 3. No statistical significance
was found across clusters in terms of demographical variables,
except for age (P=.02). Specifically, patients in cluster B were
observed to be younger and had shorter duration of diabetes
than those in the other 3 clusters (P=.04). Moreover, the patient
clusters were significantly different in various glycemic metrics,
including HbA1c level category (P<.001), COV (P=.003), and

TIR (P<.002). Patients in cluster D were associated with high
odds of meeting the HbA1c level and TIR recommended targets.
Although more than half of patients in cluster C (23/35, 66%)
met the recommended target for HbA1c level, they had one of
the greatest COV among all 4 clusters, and only 11% (4/35) of
them met the recommended target for COV. Patients in clusters
A and B were associated with significantly increased likelihood
of poorly controlled diabetes. Most patients in cluster A and all
patients in cluster B failed to fulfill HbA1c level (7/74, 10%)
and TIR targets, indicating further management needs in terms
of type or dosage of insulin intake.
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Table 3. Patient characteristics across the 4 patient clusters (N=126).

P valueaCluster D (n=13)Cluster C (n=35)Cluster B (n=4)Cluster A (n=74)Characteristics

.0233.8 (10.7)41.8 (12.9)22.8 (4.27)40.3 (14.3)Age (years), mean (SD)

.339 (69)18 (51)1 (25)34 (46)Sex (female), n (%)

.567.38 (2.66)7.34 (2.44)8.25 (2.06)7.96 (2.31)Index of Multiple Deprivation decile [53],
mean (SD)

.2223.4 (4.39)26.9 (5.69)24.1 (3.07)27.3 (4.64)BMI (kg/m2), mean (SD)

.0414.5 (14.7)24.8 (15.7)8.5 (4.36)22.2 (12.4)Duration of diabetes (years), mean (SD)

.76215 (276)167 (203)203 (56.1)218 (243)Number of days since CGMb use, mean (SD)

.85eGFRc stage, n (%)

0 (0)0 (0)0 (0)0 (0)5

0 (0)0 (0)0 (0)1 (1)4

0 (0)0 (0)0 (0)2 (3)3b

0 (0)1 (3)0 (0)4 (5)3a

6 (46)16 (46)0 (0)28 (38)2

7 (54)18 (51)4 (100)38 (51)1

<.001HbA1c
d level (mmol/mol), n (%)

7 (54)1 (3)0 (0)1 (1)≤42

3 (23)6 (17)0 (0)4 (5)43-48

2 (15)19 (54)0 (0)14 (19)48-59

1 (8)9 (26)1 (25)46 (62)59-85

0 (0)0 (0)3 (75)8 (11)≥86

<.0016.48 (1.1)8.22 (0.614)19.3 (1.46)10.8 (1.57)Glucose level, mean (SD)

.0030.37 (0.063)0.429 (0.061)0.354 (0.031)0.428 (0.066)COVe of glucose level, mean (SD)

TIRf (mmol/L), mean % (SD)

.0024.6 (5)3.2 (2.8)0.3 (0.2)1.9 (2.2)≤3

<.00111 (7.7)6.7 (2.7)0.6 (0.2)3.5 (2)3-3.9

<.00174.7 (12.9)62.4 (6.4)10.6 (2.9)43.3 (11.3)3.9-10

<.0017.5 (4.9)20.5 (4)13.3 (3.6)27.2 (6.0)10-13.9

<.0012.3 (5.8)7.3 (3.4)75.2 (5.8)24.1 (11.6)≥13.9

Time in patterns, mean % (SD)

<.00151.9 (17.9)27.6 (8.8)2.1 (0.6)13.6 (7.2)1

<.00132.5 (10.6)27.6 (5)3.6 (1.1)17 (6.1)2

<.00110.2 (6.6)23.5 (5.2)6.8 (1.7)22.4 (4.7)3

<.0015 (7.3)15.6 (4.2)10.1 (2.8)23.1 (5.7)4

<.0010.4 (0.7)5.5 (3)26.2 (5.8)19.3 (7.8)5

<.0010 (0)0.3 (0.4)51.2 (11)4.7 (6)6

Fulfillment of recommended targets [28], n (%)

<.00111 (85)23 (66)0 (0)7 (10)TIR between 3.9 and 10 mmol/L >70%
of the time

<.0017 (54)4 (11)2 (50)8 (11)COV of glucose level <0.36

<.00112 (92)26 (74)0 (0)18 (24)HbA1c level <58 mmol/mol

.105 (39)22 (63)3 (75)55 (74)Comorbidities, n (%)
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P valueaCluster D (n=13)Cluster C (n=35)Cluster B (n=4)Cluster A (n=74)Characteristics

.184 (31)19 (54)3 (75)47 (64)Diabetic complications, n (%)

Medication, n (%)

Insulin

.7512 (92)33 (94)4 (100)66 (89)Injection

.782 (15)4 (11)0 (0)11 (15)Pump

.551 (8)9 (26)1 (25)19 (26)Blood pressure

.331 (8)8 (23)0 (0)19 (26)Cholesterol

.502 (15)2 (6)0 (0)10 (14)Thyroid

.951 (8)2 (6)0 (0)4 (5)Antiplatelet

.150 (0)0 (0)0 (0)7 (10)Psychology

aP values <.05 are italicized; missing values were omitted only during the calculation of P values.
bCGM: continuous glucose monitoring.
ceGFR: estimated glomerular filtration rate.
dHbA1c: glycated hemoglobin.
eCOV: coefficient of variation.
fTIR: time in range.

Resemblance Between TIRs and Time in GV Patterns
It is possible to translate some of the TIR targets to targets of
GV patterns owing to their conceptual similarity, and it is
observed that some of the extracted GV patterns resemble the
TIR glucose cutoff points as recommended by Battelino et al
[28] (Figure 4). This can potentially serve as reference to better
understand the clinical impacts for each pattern. GV patterns 5
and 6 both belong to the very high glucose range. Thus, a

recommended target TIR of <5% within the very high glucose
range can be approximately translated to having <5% occurrence
for patterns 5 and 6. Pattern 4 generally represents high glucose
level, with cutoffs at approximately 10 and 13.9 mmol/L.
However, none of the patterns exclusively covers the very low
glucose range (<3.9 mmol/L). This is because such readings
were very rare in the data set, such that they were inherently
grouped into GV pattern 1 by the DTW model.

Figure 4. Comparison of recommended time in range (TIR) targets and extracted glycemic variability patterns. Each color in the left panel represents
a glycemic variability pattern. The lower and upper bound of each shaded region represent the 20th and 80th percentile of glucose trend for that pattern.
The median glucose trend of each pattern is highlighted. The target TIR shown in the right panel is proposed by Battelino et al [28].
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As our extracted GV patterns take fluctuation in BG into account
in addition to its magnitude, our method is able to provide
additional context for a person’s BG profile. The prevalence of
GV patterns 4 and 5 would indicate a fluctuation between high
and very high glucose ranges, whereas that of GV patterns 3
and 4 indicates a fluctuation between target to high glucose
level. This piece of information cannot be deduced from TIR.
It should be noted that taking fluctuation into account also
implies that direct translation from TIR targets to certain patterns
is unavailable, as they span across different glucose ranges. For
instance, the target glucose level ranges between 3.9 and 10
mmol/L comprises patterns 1, 2, and 3.

GV Patterns Over Time
In this study, we sought to draw insights about patients with
different time in GV patterns by using hierarchical clustering.
A total of 4 clusters was found, each with very distinguishing
glycemic fluctuation features and thus management needs. An
example of daily glucose trends from each cluster is presented
in Figure 5. Diabetes in patients in cluster D was well controlled,
and there is no need to alter their insulin regime. Although the
glucose level of patients in cluster C usually falls within target
range, it has great variability, which could indicate the need for
changing their insulin regimes to reduce fluctuation and
hyperglycemia events. In contrast, patients in clusters A and B
had very poorly controlled diabetes, and a significant increase
in fluctuation severity is observed, which suggests the need for
change in glucose management. Patients in cluster A show sharp
increases and decreases across target and hyperglycemia ranges,
whereas those in cluster B primarily fluctuate at hyperglycemia
level. A possible explanation for this is that patients in cluster
B tend to be young and had short duration of diabetes. Therefore,
the optimal way to manage their glucose levels is less apparent
and would still require some time to be determined in follow-up
consultations. Apart from existing metrics such as HbA1c level

and TIR, we believe that studying patient clusters can be
beneficial as a complementary metric during consultations,
which could improve patient care and, ultimately, clinical
outcomes.

To better understand the properties of each GV pattern, we
further evaluated the relationship between GV patterns and time
of day. The occurrence of patterns across time of day according
to cluster is presented in Figure 6. It is observed that GV pattern
1, which represents steady glucose level around marginal
hypoglycemia to normal, most frequently occurs at midnight
between 2 AM and 6 AM. This is likely owing to the absence
of food intake during the period. In contrast, GV patterns 2 and
4, which are indicators of a surge in glucose level, are more
likely to occur at typical meal hours around 9 AM, 1 PM, and
7 PM for patients in clusters C and D. Similarly, GV patterns
5 and 6 occur the most within that period for patients in cluster
B whose glucose level are very poorly controlled. These
observations are generally consistent with existing literature
about the daily fluctuation in glucose levels [29].

Apart from analyzing GV patterns over time of day, we further
investigated whether the duration of CGM use is associated
with patients’ GV profile and characteristics. On the basis of
the distribution of CGM use duration in our data set, the cohort
is divided into 3 approximately equal-sized groups to facilitate
comparison: <68 days (46/126, 36.5%), 68 to 180 days (40/126,
31.7%), and >180 days (40/126, 31.7%). Our findings revealed
that although no statistical significance was found between the
duration of CGM use and patient demographics or fulfillment
of recommended glycemic targets (all P>.05; Table 4), long
duration is associated with specific glycemic metrics, including
high mean glucose (P=.03), TIR ≥13.9 mmol/L (P=.04), and
time in pattern 6 (P=.04). This may indicate increased likelihood
of poorly controlled or managed patients who have been using
CGM for an extended period.
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Figure 5. The 1-day glucose trend of patients sampled from each cluster. The shaded region represents the target glucose range, and the 6 glycemic
variability (GV) patterns over time are highlighted in 6 colors.

Figure 6. Hourly distribution of glycemic variability (GV) patterns across a day for each patient cluster.
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Table 4. Patient characteristics across different duration of diabetes (N=126).

P valuea>180 days (n=40)68-180 days (n=40)<68 days (n=46)Characteristics

.8739.4 (14)40.4 (15.2)38.7 (12.5)Age (years), mean (SD)

.3120 (50)16 (40)26 (57)Sex (female), n (%)

.287.28 (2.73)8.1 (2.34)7.83 (2.01)Index of Multiple Deprivation decile [53], mean (SD)

.2225.7 (4)26.8 (3.9)27.8 (6.2)BMI (kg/m2), mean (SD)

.0310.5 (3.5)10.2 (2.5)9.08 (1.57)Glucose level, mean (SD)

.170.408 (0.061)0.416 (0.06)0.434 (0.074)COVb of glucose level, mean (SD)

TIRc (mmol/L), mean % (SD)

.112.6 (3)1.7 (1.5)3 (3.5)≤3

.195 (5.3)4.3 (2.8)5.9 (3.6)3-3.9

.0747.3 (18.9)49.1 (17.3)55.3 (13.5)3.9-10

.3622.8 (9)24.3 (8.5)21.7 (7.2)10-13.9

.0422.4 (21.1)20.6 (15.8)14.1 (10.3)≥13.9

Time in patterns, mean % (SD)

.0920.5 (17.5)17.4 (13.5)24.7 (14.5)1

.1019.4 (9.7)20.2 (8.8)23.4 (8.8)2

.4619.9 (7.1)21.7 (6.3)21.2 (7)3

.4018.3 (8.3)20.1 (8.2)17.8 (7.8)4

.0814.8 (11.1)15.6 (9.4)11.1 (9.2)5

.047.1 (14.9)4.9 (8.7)1.7 (2.7)6

Fulfillment of recommended targets [28], n (%)

.6513 (33)11 (28)17 (37)TIR between 3.9 and 10 mmol/L >70% of the
time

.796 (15)8 (20)7 (15)COV of glucose level <0.36

.6120 (50)17 (43)19 (41)HbA1c
d level <58 mmol/mol

aP values <.05 are italicized; missing values were omitted only during the calculation of P values.
bCOV: coefficient of variation.
cTIR: time in range.
dHbA1c: glycated hemoglobin.

Discussion

Principal Findings
As an important application of smart and connected health,
CGM has been gaining popularity rapidly ever since its inception
and is becoming a vital tool to improve glucose management
in patients with T1DM. With the increasing use of CGM for
managing patients with T1DM, metrics such as TIR are
recommended to depict GV, but a significant part of information
available in CGM data is often omitted. In this study, we
proposed a machine learning framework for extracting GV
patterns from CGM data that harnesses the strengths of machine
learning in terms of the capability of analyzing large amounts
of data. By applying DTW on CGM data, we showed that it is
possible to extract recurring patterns in CGM that inherit the
clinical concepts of TIR, a recognized CGM-derived metric.
Specifically, 6 distinctive patterns were found, and we showed

that time in patterns can be used to comprehensively represent
patients’ GV profile and to complement TIR owing to their
conceptual resemblance. We further drew insights from GV
patterns by identifying the types of patients with T1DM based
on time in patterns and addressing the relationship between GV
patterns and time of day. Our method captured information
beyond absolute glucose value and revealed the details of
glucose variability and dynamics. We demonstrated that time
in patterns is an accessible, more comprehensive representation
of a patient’s GV and could provide additional insights such as
types of patients with T1DM and time of day.

Our proposed methods successfully captured GV patterns that
inherently incorporate the idea of clinically meaningful concepts
such as mean glucose level, GV, and TIR. Time in patterns
derived from our methods contains much rich information, as
existing methods such as TIR disregard the sequence in which
the glucose measurements were made. Finally, an advantage of
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our time-in-patterns method over other proposed machine
learning–based metrics is its scalability and understandability,
which is largely owing to the ability to visualize our extracted
patterns from blood monitoring data. As mentioned in section
Quantifying GV, clinical understandability is a major issue that
hindered machine learning–based GV extraction methods from
being a widely accepted glycemic metric. For example, it is
generally more meaningful to portray GV using time in patterns,
such as 36% time spent in GV pattern 3 (rising from marginally
hyperglycemic to normal) and pattern 4 (declining from
marginally hyperglycemic to hyperglycemic), than a single SD
value such as 0.36. We also validated the blood fluctuation
patterns 1 to 5 using US-based CGM data from the
REPLACE-BG trial of 225 adults with well-controlled T1DM.
This shows that our method has the generalizability to cover
different patient cohorts from various demographics.

Limitations
This study had a few limitations. First, the duration of CGM
use varied from 1 month to 3 years across patients in this study.
Although no significant association was found between days
since the use of CGM and patient cluster (P=.76), certain effects
may not be accounted for in this study, such as seasonal effects
on glucose levels [54]. Second, the adoption of CGM at the
moment is still limited to the well-developed areas of the world
where there are information and communication technology
infrastructure with high level of digital readiness for connected
health and sufficient funding for patients with T1DM to use
wearable CGM devices. This is also reflected in our data that
the patients included in this study were predominantly living
in less deprived areas. For example, 75.4% (95/126) of the

patients in our study were living in less deprived areas according
to the Index of Multiple Deprivation (IMD) decile (IMD≥7),
and 34.9% (44/126) of them were living in the least deprived
area (IMD=10). Only 19.8% (25/126) of the patients in our
study were living in more deprived areas (IMD≤5). The average
IMD decile in different patient clusters can be found in Table
3. Therefore, the generalizability of our results to other
demographics such as patients living in rural areas is limited.
It should also be noted that apart from infrastructure and
deprivation, there are other factors affecting the adoption of
CGM such as device accuracy [55], user perception, device
obtrusiveness [56], and interpersonal influence [57]. Third, as
only the latest list of medication and laboratory test results was
collected from each patient, any change in medication or
management throughout the study period was not accounted
for. A patient who spent a lot of time in hyperglycemia may
remain in the target glucose range steadily after a change in
their insulin regime. In this case, the resulting time in patterns
would be averaged across the 2 states and fail to represent the
patient’s latest situation.

Future Studies
Future studies could focus on investigating the clinical
relationship between GV patterns and DM medications through
prospective studies and randomized control trials. By having a
more comprehensive representation of GV profile, we can better
categorize patients, which in turn would enable us to understand
more about their unique condition and needs. We believe that
this framework can ultimately serve as a step toward the
development of personalized therapeutic pathways for patients
with DM in the environment of connected health.
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