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Abstract. As the ability to make predictions regarding un-
certainty information representing natural hazards increases,
an important question for those designing and communicat-
ing hazard forecasts is how visualizations of uncertainty in-
fluence understanding amongst the intended, potentially var-
ied, target audiences. End-users have a wide range of dif-
fering expertise and backgrounds, possibly influencing the
decision-making process they undertake for a given forecast
presentation. Our previous, Part 1 study (Mulder et al., 2023)
examined how the presentation of uncertainty information
influenced end-user decision making. Here, we shift the fo-
cus to examine the decisions and reactions of participants
with differing areas of expertise (meteorology, psychology,
and graphic-communication students) when presented with
varied hypothetical forecast representations (boxplot, fan
plot, or spaghetti plot with and without median lines) us-
ing the same eye-tracking methods and experiments. Partici-
pants made decisions about a fictional scenario involving the
choices between ships of different sizes in the face of vary-
ing ice thickness forecasts. Eye movements to the graph area
and key and how they changed over time (early, intermedi-
ate, and later viewing periods) were examined. More fixa-
tions (maintained gaze on one location) and more fixation

time were spent on the graph and key during early and inter-
mediate periods of viewing, particularly for boxplots and fan
plots. The inclusion of median lines led to less fixations being
made on all graph types during early and intermediate view-
ing periods. No difference in eye movement behaviour was
found due to expertise; however, those with greater exper-
tise were more accurate in their decisions, particularly dur-
ing more difficult scenarios. Where scientific producers seek
to draw users to the central estimate, an anchoring line can
significantly reduce cognitive load, leading both experts and
non-experts to make more rational decisions. When asking
users to consider extreme scenarios or uncertainty, different
prior expertise can lead to significantly different cognitive
loads for processing information, with an impact on one’s
ability to make appropriate decisions.

1 Introduction

The importance of understanding the most ideal approach for
communicating uncertainty information is common across
multiple domains in everyday life and across a range of sci-
ences (Fischhoff et al., 2011) and is an established problem
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112 L. Williams et al.: Understanding representations of uncertainty

in geoscience communication (Stephens et al., 2012). This
importance has been highlighted by the current COVID-19
pandemic, during which there has been a sharp increase in
the use of unfamiliar visualizations of uncertainty for presen-
tation to the public in order to explain the basis of decisions
made and to justify the response being asked of them in terms
of adopting modified and new behaviours in order to mitigate
transmission. As more unfamiliar and detailed information is
presented to and interpreted by non-specialists, the decisions
made as a result have a significant impact on health, soci-
ety, and the environment so careful consideration of com-
munication is essential (Peters, 2008). It is clear that people
have trouble gaining an appropriate understanding of uncer-
tainty information and how best to use this in order to sup-
port optimal decisions (e.g. Tversky and Kahneman, 1974;
Nadav-Greenberg and Joslyn, 2009; Roulston and Kaplan,
2009; Savelli and Joslyn, 2013). A great deal of research has
been concerned with addressing the most appropriate way to
communicate uncertainty to promote effective decision mak-
ing and understanding (Fischhoff et al., 2011; Milne et al.,
2015). The factors of what uncertainty information should
be included, what ought to be emphasized, and the manner
in which it is best conveyed all have an important role to
play (Bostrom et al., 2016; Broad et al., 2012; Morss et al.,
2015; Padilla et al., 2015). Furthermore, there is a reluctance
by authors, such as data scientists, journalists, designers, and
science communicators, to present visual representations of
quantified uncertainty (Hullman, 2019). There is a belief that
it will overwhelm the audience and the main purpose of the
data, that it will invite criticism and scepticism, and that it
may be erroneously interpreted as incompetence and that a
lack of confidence which will encourage a mistrust of the
science (Fischhoff et al., 2011; Gustafson and Rice, 2019;
Hullman, 2019). This research points to the lack of consis-
tent recommendations and stresses the need for the form of
communication being tailored to both the aims and desired
outcomes of the communicator and the needs and abilities of
the audience (Spiegelhalter et al., 2011; Lorenz et al., 2015;
Harold et al., 2016; Petropoulos et al., 2022).

Visualizing uncertainty in geoscience forecasts needs to
balance robustness, richness, and saliency (Stephens et al.,
2012). Recently, numerous studies have focussed on creative
ways to achieve this (Lorenz et al., 2015; Harold et al., 2016;
Petropoulos et al., 2022). Communication of uncertainty can
take the form of words, but this can lead to issues of ambi-
guity caused by the language used and the variation in user
interpretation (Wallsten et al., 1986; Skubisz et al., 2009).
However, there is clearly strength to this approach when it is
needed. For example, taking a storyline approach has been
shown to be a powerful technique for communicating risk
when less focus is needed on probabilistic information and
when more emphasis is needed on plausible future events
(Shepherd et al., 2018; Sillmann et al., 2021). To overcome
the issues of the ambiguity of words, numbers are often used
to present uncertainty as probabilities in the form of frac-

tions (1/100), natural frequencies (1 in 100), or percentages
(1 %), but these forms can lead to ratio bias or denominator
neglect (Morss et al., 2008; Kurz-Milcke et al., 2008; Reyna
and Brainerd, 2008; Denes-Raj and Epstein, 1994; Garcia-
Retamero et al., 2010), and the most effective form to use to
aid understanding can depend on the context (Gigerenzer and
Hoffrage, 1995; Joslyn and Nichols, 2009). Similarly, pre-
senting uncertainty graphically can take many forms, which
means this has the advantage of flexibility of presentation,
can be tailored to specific audiences, can help with differing
levels of numeracy, and can help people focus on the impor-
tant gist of the information when using uncertainty to help
reach a decision (Feldman-Stewart et al., 2007; Peters et al.,
2007; Lipkus and Hollands, 1999). As with the use of words,
the choice of graphic to be employed is dependent on the
audience and the intended message outcome (Spiegelhalter,
2017) and can lead to the overestimation of risk and nega-
tive consequences depending on the framing of the informa-
tion (Vischers et al., 2009). Pie charts are good for present-
ing proportions and part-to-whole comparisons and benefit
from being intuitive and familiar to the public, but interpre-
tation can sometimes be difficult (Nelson et al., 2009). Bar
charts are useful for communicating magnitude and for al-
lowing comparisons (Lipkus, 2007), while line graphs are
helpful in conveying trend information about the change in
uncertainty over time. Icons can also be very useful, espe-
cially for people with low numeracy, and have been found to
be effective when supplemented by a tree diagram (Galesic et
al., 2009; Gigerenzer et al., 2007; Kurz-Milcke et al., 2008).
These types of graphical communication can also include in-
formation about the range of uncertainty (such as a “cone of
uncertainty”; Morss et al., 2016).

Previous research has shown that including uncertainty
information can aid users in making more rational deci-
sions (Nadav-Greenberg et al., 2008; Nadav-Greenberg and
Joslyn, 2009; Roulston and Kaplan, 2009; Savelli and Joslyn,
2013; St John et al., 2000). One way in which this is achieved
is by use of heuristics (Tversky and Kahneman, 1974). If se-
lected wisely then these can help simplify probabilistic in-
formation to bolster and speed up decisions that promote
the optimal interpretation of data. However, poor selection
can hinder this and encourage suboptimal decisions (Mul-
der et al., 2020). For example, providing an anchor value
alongside data can help users interpret the data more effi-
ciently by focussing them on that particular value (for exam-
ple, in weather forecasting focussing people on the precip-
itation level recorded on previous days that match the one
being forecasted as a start point to estimating rainfall) but if
chosen poorly can encourage a more extreme and subopti-
mal interpretation (focussing on the maximum precipitation
level would encourage higher estimates of rainfall). In terms
of a graphical visualization of uncertainty, providing a central
line showing a likely hurricane track has been reported to dis-
tract users from possible hurricane tracks given by the cone
of uncertainty. Equally, however, the cone of uncertainty has
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sometimes been misinterpreted as showing the extent of the
storm (Broad et al., 2007). Beyond heuristics, other design
choices have also been found to affect optimal and efficient
decision making (Speier, 2006; Kelton et al., 2010; Wickens
et al., 2021). Different designs of boxplots and graphs show-
ing the same information affect decisions and interpretations
(Correll and Gleicher, 2014; Bosetti et al., 2017; Tak et al.,
2013, 2015). Forecasting maximum values from graphs was
found to depend on the graph type (Mulder et al., 2020). Giv-
ing tornado warnings with probabilistic information about
where a tornado may strike increased the response in those
areas compared to the response elicited with deterministic
information (Ash et al., 2014).

Part I of this study, which from here will be called the
companion paper (Mulder et al., 2023), shows that, for all
groups, great care is needed in designing graphical repre-
sentations of uncertain forecasts. This is especially so when
attention needs to be given to critical information, and the
presentation of the data makes this more difficult. In partic-
ular, well-known anchoring effects associated with mean or
median lines can draw attention away from extreme values
for particular presentation types (Broad et al., 2007; Nadav-
Greenberg et al., 2008; Mulder et al., 2020). The availability
of easy-to-use tools that make the development of complex
graphical representations of forecasts quick and cheap to pro-
duce poses new challenges for the geo-scientists. Within the
environmental sciences, making forecasts of natural hazards
(such as landfall of hurricanes, flooding, seismic risk, and the
changing climate) that are useful to end-users depends crit-
ically on communicating in a concise and informative way,
particularly since end-users have a wide range of differing
expertise, spanning a spectrum from geo-physical scientists
to those with no formal scientific training. Therefore, the way
in which information is displayed is very important for avoid-
ing misperceptions and ensuring that appropriate steps are
taken by end-users, especially when perceptions of natural
hazards can differ between experts and non-experts (Fuchs
et al., 2009; Goldberg and Helfman, 2010). Here, we com-
pare the response of three different groups of end-users with
different levels of scientific expertise to the same series of
forecast presentations to explore how more and less complex
presentations influence decision making and perception.

Expertise differences may be due to greater familiarity
with the ways in which hazard information is made avail-
able. This enables experts to make more economically ratio-
nal decisions and to interpret uncertainty information more
effectively (Mulder et al., 2020). However, the role of ex-
pertise remains unclear; some studies show no differences
in decision-making tasks, with both experts and non-experts
being able to process and use forecast information to make
decisions and with the inclusion of uncertainty information
being found to be useful for both experts and non-experts
(Nadav-Greenberg et al., 2008; Kirschenbaum et al., 2014;
Wu et al., 2014). Furthermore, it is unclear whether the pre-
sentation of uncertainty information in visual formats results

in benefits over using verbal and numerical expressions. For
instance, uncertainty presented as a pictograph or with graph-
ical representations may help with understanding and inter-
pretation (Zikmund-Fisher et al., 2008; Milne et al., 2015;
Susac et al., 2017). Additionally, research is required to ex-
amine differences in expertise, particularly as determinis-
tic construal errors can be made as observers are often un-
aware that uncertainty is being depicted within visualiza-
tions (Joslyn and Savelli, 2021). Inappropriate information
that captures attention is also often relied on, which can dis-
tort judgements (Fundel et al., 2019).

Experts are better at directing attention (through eye
movements) to the important information required for mak-
ing a decision. For example, in judgements of flight failures,
expert pilots were found to make faster and more correct de-
cisions, making more eye movements to the cues related to
failures than non-experts (Schriver et al., 2008). Kang and
Landry (2014) also found non-experts to improve after they
were trained with the eye movement scan paths of experts;
training led non-experts to make fewer errors (false alarms)
on aircraft conflict detection tasks. However, there is little
research examining eye movements when experts and non-
experts are required to make decisions using graphical and
numerical forecast information. It is not clear which aspects
of forecast information are being examined and when and,
equally, which are being ignored.

More generally, research has shown that, when viewing
images, more fixations are made on informative regions and
areas of interest (Unema et al., 2005). The times at which
these fixations are made has been found to vary depend-
ing on the task, decision type, and expertise. Antes (1974)
found that early fixations in the first few seconds of viewing
pictures were oriented towards informative areas. Goldberg
and Helfman (2010) also showed that important regions of
interest were fixated on early during observation of differ-
ent graphs. Experts have been shown to identify and fixate
on informative aspects of visual information more quickly
and more often than non-experts (Maturi and Sheridan 2020;
Charness et al., 2001; Kundel et al., 2008). In addition to the
informative parts of a scene or image, Shimojo et al. (2003)
reported that the likelihood that fixation would be made on
the item preferred increased over time, particularly in the fi-
nal second before selection (see also Glaholt and Reingold,
2009; Simion and Shimojo, 2006; Williams et al., 2018).
These results show that informative and preferred areas of
images are selectively fixated on early, more often, and for
longer. As viewing evolves, fixations start to reflect final
choices and preferences. The temporal development of this
is task-dependent and influenced by expertise.

Here, we explore eye movement behaviour in similar hy-
pothetical scenarios but with a particular interest in differ-
ences due to participant expertise or background, following
the research discussed, in terms of gaze to graph areas and
keys over different time periods of the decision-making pro-
cess. Regardless of expertise, the presence of a median line
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on graphs has been found to influence the location of partici-
pants’ gaze fixations, moving their distributions closer to the
median line (Mulder et al., 2020). Depending on the graph
type, the presence of a key can lead to errors, which may
be a function of finding that the key is not directly fixated
on in those representations (Mulder et al., 2020). Here we
explore these patterns, particularly whether these are a func-
tion of expertise. As in our companion paper (Mulder et al.,
2023), we examine gaze patterns when faced with the task
of making decisions about a fictional scenario involving the
choices between ships of different sizes in the face of vary-
ing ice thickness forecasts (30 %, 50 %, 70 %), with the nec-
essary information being presented in different formats (box-
plot, fan plot, or spaghetti plot and with or without median
lines).

We use eye-tracking techniques and exploration of the ac-
curacy of decision tasks across expertise to address the fol-
lowing questions:

1. Does the presence of a median line and expertise affect
gaze over the course of the decision-making process?

2. Does expertise affect gaze to the key over the course of
the decision-making process?

3. Does expertise affect the accuracy of decisions?

2 Methodology

2.1 Participants

A total of 65 participants took part in this study: 22 mete-
orology students, 22 psychology students, and 21 graphic-
communication students recruited from the University of
Reading (38 females, 27 males). Participants were aged 18–
32 (M = 21.2) and had completed 0–4 (M = 1.0) years of
their respective degrees. Meteorology students are consid-
ered to have more training in graph reading, scientific data
use, and quantitative problem solving as part of their de-
gree and in qualifying for the course compared to students
in other degree courses which have less of a focus on these
areas. Within this study, meteorology students were therefore
considered to have greater expertise compared to the psycho-
logy and graphic-communication students, although psycho-
logy students are also likely to have statistical knowledge and
experience reading graphs. The research team involved aca-
demics who taught on each of these subjects and therefore
can substantiate these generalizations.

2.2 Design and procedure

A hypothetical scenario of ice thickness forecast for a fic-
tional location was provided to participants (see Mulder et
al., 2023, for further details). This type of forecast was cho-
sen as it is very unlikely to be one that is familiar to our par-
ticipants; this minimizes any effects of preconceived notions

of uncertainty. Participants were informed that they were
making shipments across an icy strait and, using ice thickness
forecasts, had to decide whether to send a small ship or large
ship. The small ship could crush 1 m thick ice, whereas the
large ship could crush ice larger than this. There was a differ-
ential cost involved in this decision, with the small ship cost-
ing GBP 1000 to send and the large ship costing GBP 5000
to send. The participants were additionally made aware that
if the ice was thicker than 1 m and the small ship was sent,
this would incur a penalty cost of GBP 8000.

Ice thickness forecasts were presented using four differ-
ent representations: deterministic line, box plot, fan plot,
and spaghetti plot. Each representation was presented with
or without a median line. Each of these graph types was
shown to represent 30 %, 50 %, and 70 % probability of the
ice thickness exceeding 1 m (see Fig. 1 for examples of each
graph type). In this paper, we only examined the decision
task question where participants were asked to select which
ship (small or large) to send across an icy strait 72 h ahead of
time using a 72 h forecast of ice thickness (see our compan-
ion paper, Mulder et al., 2023, for further details on the hypo-
thetical scenarios). While performing this task, participants
wore an EyeLink II eye tracker headset, which recorded eye
movements of the right eye as they completed the survey.
Head movements were restrained, and the eye tracker was
calibrated to ensure accurate eye movement recording.

2.3 Eye-tracking apparatus

Participants wore an EyeLink II (SR Research Ltd) eye
tracker headset (Fig. 2), which recorded eye movements of
the right eye at a rate of 500 Hz as they completed the
task. The EyeLink II is a high-resolution, comfortable, head-
mounted, video-based eye tracker with 0.5◦ average accu-
racy (offset between actual gaze location and that recorded)
and 0.01◦ resolution (dispersal of gaze locations during fixa-
tions), which gives highly accurate spatial and temporal reso-
lutions. Participants’ gazes were precisely calibrated and re-
calibrated throughout the study as necessary to maintain ac-
curate recording. Each forecast and task was presented on a
21-inch coloured-desktop PC with a monitor refresh rate of
75 Hz. Participants were seated at a distance of 57 cm from
the monitor, and their head movements were minimized by
a chin rest (Fig. 2). Fixation location and duration were ex-
tracted after study completion. Fixation was defined as times
when the eyes were still and not in motion (i.e. no saccades
were detected). These measures were used as proxies of the
aspects of the forecasts that were being attended to by par-
ticipants as they made their decisions. These give direct in-
sight into the information and visual features that are salient
when participants are attempting to understand and use un-
certainty in forecasting in order to make decisions. For more
information on the methods used in eye-tracking studies, see
Holmqvist et al. (2011).
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Figure 1. The four forecast representations used in this analysis: (a) deterministic (using only the median line), (b, c) spaghetti plot, (d, e) fan
plot, and (f, g) box plot. Uncertainty forecasts were shown both with median lines (b, d, f) and without median lines (c, e, g). All forecasts
represent the same information: 3 of 10 model runs show ice greater than 1 m thick. The same plots were produced for 50 % and 70 % chance
of the ice being greater than 1 m thick (not shown). The dotted line in each graphic shows 1 m ice thickness, the threshold the participants
predicted.
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116 L. Williams et al.: Understanding representations of uncertainty

Figure 2. On the left are pictures of the head-mounted eye tracker, EyeLink II (SR Research Ltd), used to record participants’ eye movements
while taking part in the study, with an example of boxplot trial shown on the display. (a–d) Composite heat maps are shown. These show
the accumulation of the duration of eye fixations (in milliseconds) of all participants for the ship decision (a, b) and maximum ice thickness
(c, d) tasks. Heat maps are shown only for the spaghetti plot with (a, c) and without (b, d) median lines. Heat maps for the other forecast
representations can be found in Appendix B of Mulder et al. (2023). Please note that, between each question, there was a cross present to
help participants focus back to the centre of the screen prior to moving on to the next trial. This central start position resulted in collections
of fixations in the centre of the displays and can be seen on all of the four heat maps shown. It is most clear in the top-right heat map.

2.4 Data analysis

Two interest areas were formed from a post hoc classification
to address our research questions (graph area and key). Three
viewing periods across trials were created (early, intermedi-
ate, late). The exact definition of early, intermediate, and late
differed by type of graph due to each style evoking slightly
different viewing periods. Viewing periods for each specific
graph type were made up of equal bins divided across the
average time to complete the question and therefore ranged
between 5 and 6 s. In this study, we report the number of fix-
ations and the total fixation duration.

In our companion paper (Mulder et al., 2023), our analy-
sis of gaze was across all experimental trials and all tasks.
However, as we are concerned with the viewing period and
want to avoid effects of learning, we examine gaze when par-
ticipants were faced with each graph type for the first time.
Repeated exposure to graph type and the demand to make
the same judgement may influence gaze patterns as informa-
tive parts of the figures are located more swiftly. Therefore,
six trials for each graph type for each participant were exam-

ined. We analysed the accuracy of responses to this question
(making the safe and cost-effective choice of the two options)
and participants’ gaze (number and total fixation duration).

Based on the results of our companion paper (Mulder et
al., 2023), we further explore the impact of the presence of
a median line considering the viewing period, expertise, and
graph type. We then focus on fixation towards the keys, in-
cluding viewing period, expertise, graph type, and the pres-
ence of a median line as variables. Data were analysed us-
ing an analysis of variance (also known as ANOVA) ap-
proach, which tests for differences across the mean responses
in cases where there are multiple conditions or groups greater
than two. Further post hoc analyses examining differences
between specific pairs of conditions or groups were car-
ried out using t tests, which are Bonferroni corrected (this
is a correction to the significance threshold criteria to con-
trol for the number of comparisons carried out; see Bagu-
ley, 2012, for an example). For both research questions, a
four-way mixed-measures ANOVA was conducted, includ-
ing graph type, presence of a median line, and viewing pe-
riod as within-subject variables (i.e. all participants took part
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in all these conditions) and expertise as a between-subjects
variable (participants were grouped by expertise). Finally,
we report the accuracy of responses for the ice ship decision
task, highlighting any differences due to expertise. There are
a number of components to the output of the analysis of vari-
ance (ANOVA). Below, we provide a key which may help in
understanding the output we report.

3 Results

3.1 Does the presence of a median line and expertise
affect gaze over the course of the decision-making
process?

Here, we examined how the presence of the median line in-
fluences eye movement behaviour when considered across
the viewing period from early to late stages and across dif-
ferent levels of expertise, as well as according to the graph
type. Table 1 shows a summary of the statistical outcomes
detailed in the paragraphs below, along with a short descrip-
tion of what they show.

The main effect of the presence of a median line was found
for the number of fixations and the total fixation duration in
relation to the graph area (p′s<0.015). More fixations were
made, and more time was spent fixating on the graph area of
the display when no median line was present (fixation count
M = 8.74; total duration M = 2128.64) compared to when
a median line was provided (fixation count M = 7.89; total
duration M = 1887.47).

The main effect of graph type was also found for the num-
ber of fixations and the total fixation duration in relation to
the graph area (p′s<0.001). Boxplots elicited more fixations,
and more time was spent fixating on boxplots (fixation count
M = 9.07; total duration M = 2222.21) and fan plots (fixa-
tion countM = 8.71; total durationM = 2091.04) compared
to spaghetti plots (fixation count M = 7.17; total duration
M = 1710.92).

There was also a main effect observed in terms of the
viewing period for the number of fixations and the total
fixation duration in relation to the graph area (p′s<0.001).
There was found to be a greater number of fixations with
longer dwell times on the graph area during early (fixation
count M = 9.83; total duration M = 2399.96) and interme-
diate (fixation count M = 9.52; total duration M = 2284.11)
viewing periods compared to later periods (fixation count
M = 5.60; total duration M = 1340.09).

There was no main effect of expertise on fixation count
and total fixation duration (p′s>0.05).

In addition to the main effects of the median line, graph
type, and viewing period, there was an interaction between
the median line and the viewing period for the total fixa-
tion duration (p = 0.03). Less time was spent fixating on
the graph area during the early and intermediate stages of
viewing when a median line was present (early total dura-
tionM = 2174.97; intermediate total durationM = 2137.79,

p<0.001) compared to when no median line was present
(early total duration M = 2624.96; intermediate total dura-
tion M = 2430.43, p = 0.05). However, no differences were
found due to the presence (later total durationM = 1349.65)
or absence (later total duration M = 1330.54) of a median
line during the later stages (p = 0.896). No other interactions
were found to be significant. These findings support that the
median line can reduce cognitive load, impacting the total
fixation duration and the number of fixations made on the
graph area, particularly during early stages of the decision-
making process, and adds to results from our companion pa-
per that showed how fixation location was towards the me-
dian line when present, regardless of the type of graph.

Key to analysis of variance (ANOVA) output

– F is the inferential statistic test returned by the ANOVA,
which shows the proportion of variance in the partici-
pant data as explained by a model of the data that in-
cludes the levels of the independent variable compared
to that which can be accounted for when that variable is
not included (i.e. by chance alone).

– The df (degrees of freedom) are shown in brackets after
the F value.

– MSE is the mean square error, which is the mean of the
variance accounted for by chance alone.

– p shows the chances that the results would be found if
there was actually no difference to be found, the com-
mon threshold being 0.05 (5 %). A p value less than
0.05 would be commonly labelled as being significant;
i.e. we were unlikely to have recorded the data we did if
there was actually no difference caused by the indepen-
dent variable(s).

– η2 refers to partial eta-squared, which is a measure of
effect size. This gives insight into the strength of the
effect of an independent variable; p values are affected
by sample size, whereas effect size measures are not and
so allow comparisons to be made across variables.

3.2 Is gaze to the key influenced by expertise and the
viewing period during the decision-making process?

In order to examine how gaze parameters in relation to the
graph key change throughout the viewing period prior to the
final decision, we extracted the number of fixations made on
the key and their duration. Table 2 shows a summary of the
statistical outcomes detailed in the paragraphs below, along
with a short description of what they show.

The main effect of graph type was found for the num-
ber of fixations and the total fixation duration in relation to
the key (p′s<0.001). More fixations were made and more
time was spent fixating on fan plot keys (fixation count M =
2.45; total duration M = 626.79) compared to both boxplot
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Table 1. A summary of the main significant statistical outcomes examining the effect of median line presence, graph type, viewing period,
and expertise on gaze behaviour, as detailed in the text. All significant main effects and interactions are included, along with important
non-significant findings. The numerical outcome values of the statistical analysis are included here and are italicized.

Number of fixations Total fixation duration

F df MSE p η2 F df MSE p η2

Main effects – median line 0.18 1, 62 7.57 0.667 0.003 0.06 1, 62 543 399 0.805 0.001

Graph type 42.9 2, 124 8.10 <0.001 0.409 42.4 2, 124 574 225 <0.001 0.41

Viewing period 18.0 2, 124 6.59 <0.001 0.225 21.0 2. 124 416 719 <0.001 0.25

Expertise 0.25 1, 62 10.19 0.779 0.008 0.14 1, 62 730 099 0.87 0.005

Interaction – graph type and viewing period 3.58 4, 248 4.72 0.007 0.055 4.26 4, 248 330 504 0.002 0.064

(fixation count M = 1.48; total duration M = 387.75) and
spaghetti plot keys (fixation count M = 0.56; total duration
M = 127.13), and more fixations were made and more time
was spent on boxplot keys compared to spaghetti plot keys.

There was a main effect of the viewing period on the num-
ber of fixations on the key within the display, as well as on
the total amount of fixations (p′s<0.001). More fixations and
longer dwell times in relation to the key occurred during the
early (fixation count M = 1.61; total duration M = 407.15)
and intermediate (fixation count M = 1.99; total duration
M = 515.33) viewing periods compared to later periods (fix-
ation count M = 0.90; total duration M = 219.20).

No main effect of the median line on either fixation count
or total fixation durations was found (p′s>0.05) nor was
there a main effect of expertise on fixation count and total
fixation duration (p′s>0.05).

An interaction between the graph type and viewing pe-
riod for fixation count and total fixation duration was found
(p′s<0.008). More fixations were made and more time was
spent fixating on the boxplot key during the early (fixa-
tion count M = 1.68; total duration M = 423.76) and in-
termediate (fixation count M = 2.06; total duration M =

577.11) stages of the viewing period compared to the later
stage (fixation count M = 0.71; total duration M = 162.39)
(p′s<0.005). Similarly, more fixations were made and more
time was spent fixating on the fan plot key during the early
(fixation count M = 2.69; total duration M = 695.64) and
intermediate stages (fixation count M = 3.10; total dura-
tion M = 791.37) compared to the later stage (fixation count
M = 1.55; total duration M = 393.37) (p′s<0.005). How-
ever, no differences were found between viewing periods for
spaghetti plots (p′s>0.05). The reason for less fixation in
relation to spaghetti plot keys generally and for the lack of
differences over time could be the intuitiveness of this form
of plot and the simplicity of the key.

3.3 Does expertise affect accuracy of decisions?

Mulder et al. (2020) found no significant difference in the
accuracy of decisions made between the graph types; there

was only a difference in the amount of uncertainty interpreted
from them. Here, accuracy responses in terms of the number
of times participants correctly identified which ship would be
most economically rational to send were measured consider-
ing expertise and probability of risk.

Overall, participants were accurate in their choice of ship
(meteorology= 85.5 %; psychology= 77.9 %; graphic com-
munication= 80.7 %); however, some differences were ap-
parent due to expertise. A one-way ANOVA shows differ-
ences in accuracy when presented with 50 % probability of
risk, which is the most challenging task (F (2,64)= 4.029,
MSE= 2.27, p = 0.023, η2

= 0.115). Multiple comparisons
show meteorology students to be significantly more accurate
than psychology students in choosing the large ship during
these scenarios (p = 0.035) and more accurate than graphic
communication students, although this difference is not sig-
nificant (p = 0.08). No differences between levels of exper-
tise were found for the 30 % and 70 % trials (p>0.05).

4 Discussion and conclusions

As scientific information is increasingly being presented to
non-specialists graphically, it is important to consider how
this information is delivered. This approach to open science,
which is less dependent on expert interpretation, is a natu-
ral development as general scientific literacy increases and
is welcomed by both scientific producers and consumers. As
this approach develops, it becomes much more important to
have a clear understanding of the biases in interpretation that
result from different forms of data presentation. While rele-
vant to many fields of science, there is a particular need for
this understanding in the environmental sciences as environ-
mental hazards increase and change.

Prior research presents mixed results, with some authors
suggesting that, when making slight variations to graph rep-
resentations that display uncertainty, decisions and interpre-
tations differ (Correll and Gleicher, 2014; Tak et al., 2015),
whilst others show that, despite greater discrepancies in
forecast representation such as between graphic visualiza-
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Table 2. A summary of the main significant statistical outcomes examining the effect of median line presence, graph type, viewing period,
and expertise on gaze behaviour in terms of the graph keys detailed in the text. All significant main effects and interactions are included,
along with important non-significant findings. The numerical outcome values of the statistical analysis are included here and are italicized.

Effect of . . . Number of fixations Total fixation duration

F df MSE p η2 F df MSE p η2

Main effects – median line 0.18 1, 62 7.57 0.68 0.003 0.06 1, 62 543 399 0.81 0.001

Graph type 42.9 2, 124 8.1 <0.001 0.409 42.4 2, 124 574 225 0.001 0.41

Viewing period 18.0 1, 124 6.59 <0.001 0.225 21.0 2, 124 416 720 <0.001 0.25

Expertise 0.25 1, 62 10.2 0.78 0.008 0.14 1, 62 730 099 0.87 0.005

Interaction – graph type and viewing period 3.58 4, 248 4.7 0.007 0.055 4.3 4, 248 330 504 0.002 0.064

Table 3. Table 3 presents accuracy results for all probabilities of risk for differing expertise. A small ship is the correct ship to send for a
30 % risk of ice thickness, and a large ship is the correct ship to send for 50 % and 70 % risk levels.

Meteorology Psychology Graphic
communication

30 % probability 74 % 66.2 % 75.5 %
50 % probability 87 % 70.1 % 72.1 %
70 % probability 95.4 % 96.1 % 94.6 %

tions and written forms, there are no differences (Nadav-
Greenberg and Joslyn, 2009). Furthermore, few studies ex-
plore how experts and non-experts interpret forecast informa-
tion from different types of graphical forecast representations
(Mulder et al., 2020). The current research examines these
areas further by using eye movement techniques considering
expertise and the viewing period during the decision-making
process when observing a range of graph types.

More economically rational responses to the ship deci-
sion were made by meteorology students (greater level of
expertise) during the most difficult scenarios. We found par-
ticipants, regardless of expertise, to spend less time fixat-
ing on the overall graph when a median line was presented,
particularly during early and intermediate stages of view-
ing. This provides more evidence for the anchoring bias
suggested in previous papers (Mulder et al., 2020). Par-
ticipants focussed on the key for boxplots and fan plots
more during early and intermediate stages compared to later
stages. This provides evidence that early stages of viewing
are more exploratory and oriented towards informative areas
(Buswell, 1935; Yarbus, 1967; Antes, 1974; Nodine et al.,
1993; Locher, 2006; Locher et al., 2008; Locher, 2015; Gold-
berg and Helfman, 2010). However, considering the results
and the differences found due to graph type, spaghetti plots
appear to be simpler to interpret, potentially reducing cogni-
tive load (Walter and Bex, 2021), corroborating the findings
in Mulder et al. (2020) that the spaghetti plot helped users
interpret extreme values.

Overall, this study, together with the analysis in our com-
panion paper (Mulder et al., 2023), demonstrates that there

are many challenges when presenting natural-hazard data to
both experts and non-experts; the way that information is
portrayed can impact interpretations and decisions. It is im-
portant to note that the graph area and key are specific to the
particular tasks presented in this study and are used as in-
dicators of the impact of expertise, graph type, and viewing
period. Furthermore, the course of study within higher edu-
cation was used as a proxy for expertise, with meteorology
students being regarded to have higher levels of expertise.
However, future research would benefit from examining the
behaviour and decisions of academics and forecasters who
would be considered experts.

Responses to the ship decision (small or large) based on
economic rationality support the importance of expertise.
While accuracy is generally reduced with the probability of
ice thickness, those with greater expertise are less prone to
this and are more accurate during more uncertain situations.
While their accuracy was as low as others for 30 % probabil-
ity conditions, with a little less uncertainty (50 % probability
of risk), accuracy improved more than with the other groups.
This suggests that the meteorology students were able to use
their expertise to understand the forecasts to inform their de-
cisions more effectively than the other groups. However, ex-
pertise appears to have little impact on eye movement be-
haviour within our study. Differences between experts and
non-experts in terms of their decisions and interpretations of
best-guess forecasts and their inference of uncertainty have
been reported previously (Mulder et al., 2020). However,
Doyle et al. (2014) found no differences in the use of proba-
bilistic information for forecasts of volcanic eruptions. Other
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contradictory evidence has also been reported in tests of nu-
meracy as a predictor for making economically rational deci-
sions (Roulston and Kaplan, 2009; Tak et al., 2015). Differ-
ences may be due to what “expert” means in these circum-
stances. As pointed out, our sample used years of study as
the expertise proxy, and while showing some effect, this may
not reflect the decision-making and behaviour of those with
many years of experience. Thus, it may well be the case that
those with greater expertise would show a more effective use
of forecast information provided both in terms of accuracy
and more effective information extraction, as shown through
eye movement differences not found in our sample.

The results show how median lines can reduce cognitive
load, drawing users to the central estimate regardless of ex-
pertise. A median line reduces the perceived uncertainty in a
graphic, even when explicitly presented (Mulder et al., 2020)
so use of a median line should be used when the amount of
uncertainty in the estimate is less critical to understand. Use
of the key within graphical representations can also impact
interpretations of data. For forecast providers, this suggests
that standard information design principles which seek to re-
duce visual noise in data presentation and draw the user to the
critical parts can have major benefits in terms of their ability
to effectively communicate with both expert and non-expert
end-users.

More broadly, taken together, the results reported here and
those reported by Mulder et al. (2023) suggest that incor-
porating eye-tracking and other techniques from cognitive
science into the process of the design of forecast commu-
nication tools could be extremely fruitful. These techniques
are now well established with technology that makes them
relatively cheap to set up and use. Graphical presentation of
geo-scientific forecasts can happen with a range of breadth
and longevity of communication in mind. While eye-tracking
and related techniques would not be appropriate for all pur-
poses, where graphics are being developed for routine and
wide use, for example in routine weather forecasts, this kind
of approach would be a very valuable addition to end-user
engagement. One obvious extension to the work in the two
parts of this study is applying the same techniques to well-
known and widely used geo-scientific forecast graphics.
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