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Abstract
A classical result of Calkin [Ann. of Math. (2) 42 (1941), pp. 839–873] says that an inner
derivation S �→ [T , S] = T S − ST maps the algebra of bounded operators on a Hilbert
space into the ideal of compact operators if and only if T is a compact perturbation of the
multiplication by a scalar. In general, an analogous statement fails for operators on Banach
spaces. To complement Calkin’s result, we characterize Volterra-type inner derivations on
Hardy spaces using generalized area operators and compact intertwining relations forVolterra
and composition operators. Further, we characterize the compact intertwining relations for
multiplication and composition operators between Hardy and Bergman spaces.

Keywords Volterra-type inner derivation · Hardy space · Composition operator · Area
operator · Compact intertwining relation

Mathematics Subject Classification 47B47 · 32A35 · 32A36 · 47B38 · 47B33

1 Introduction

LetA be a Banach algebra over the complex field. A linear map D : A → A is a derivation
if D(xy) = x D(y) + D(x)y for all x, y ∈ A . Over the last half century, there have been
plenty of results giving conditions on a derivation of a Banach algebra implying that its range
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is contained in some ideal. One of the most famous results given by Singer and Wermer [1,
Theorem 1] says that every continuous derivation of a commutative Banach algebra maps
into the Jacobson radical of the algebra. Previously Calkin [2, Theorem 2.9] proved that an
inner derivation X �→ [T , X ] := T X − XT maps the algebra of all bounded operators on a
Hilbert space to the ideal of all compact operators if and only if T is a compact perturbation
of a scalar operator. Notice that this conclusion fails to hold true on the Banach spaces in
general (see [3, p. 288]). In this paper, we are interested in Volterra-type inner derivations
on Hardy spaces, and, in particular, give characterizations which complement and in a sense
extend some aspects of Calkin’s work to the algebras of bounded linear operators on Hardy
spaces.

To state our main results, we recall some basic definitions. Let H(D) denote the class of
all analytic functions in the unit disk D of the complex plane C and let S(D) be the collection
of all analytic self-maps of D.

For 0 < p < ∞, the Hardy space Hp is defined to be the Banach space of all analytic
functions f in D with

‖ f ‖Hp :=
(

sup
0<r<1

1

2π

∫ 2π

0

∣∣∣ f
(

reiθ
)∣∣∣p

dθ

)1/p

< ∞.

For 0 < p < ∞ and α > −1, the weighted Bergman spaceAp
α(D) consists of all analytic

functions f in D for which

‖ f ‖Ap
α

:=
(∫

D

| f (z)|p dAα(z)

) 1
p

< ∞,

where dAα(z) = (1 + α)
(
1 − |z|2)α

dA(z) and dA(z) = dxdy/π is the normalized area
measure.

For a ∈ D, the Möbius map ψa of the disk that interchanges z and 0 is defined by

ψa(z) = a − z

1 − āz
, z ∈ D.

It is well known that

1 − |ψa(z)|2 =
(
1 − |a|2) (

1 − |z|2)
|1 − āz|2 .

Let Aut(D) denote the automorphism group of D. It is well known in elementary complex
analysis that every ψ ∈ Aut(D) has the form

ψ(z) = eiθψa(z), θ ∈ [0, 2π), a ∈ D.

The space of analytic functions on D of bounded mean oscillation, denoted by BMOA,
consists of functions f in H2 such that

‖ f ‖2BMOA = | f (0)|2 + sup
I

1

|I |
∫

I
| f (θ) − f I |2 dθ < +∞,

where

f I = 1

|I |
∫

I
f (θ) dθ
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is the length of I . The closure in BMOA, of the set of all polynomials is called VMOA.
By [4], we know that f ∈ BMOA if and only if

sup
a∈D

∫
D

(1 − |ψa(z)|2)| f ′(z)|2dA(z) < ∞,

and f ∈ VMOA if and only if

lim|a|→1

∫
D

(1 − |ψa(z)|2)| f ′(z)|2dA(z) = 0. (1.1)

For f ∈ H(D), every ϕ ∈ S(D) induces a composition operator Cϕ by Cϕ f = f ◦ ϕ.

If ϕ(z) = eıθ z for θ ∈ [0, 2π ], we call Cϕ a rotation composition operator. The rotation
composition operators play a crucial role in the proofs of Theorems 3.2 and 5.3. The bound-
edness and compactness of composition operators on various analytic function spaces have
been studied intensively in the past few decades (see, e.g., [5] and [6]).

For g ∈ H(D), the Volterra-type operators Jg and Ig are defined by

Jg f (z) =
∫ z

0
f (ζ )g′(ζ )dζ and Ig f (z) =

∫ z

0
f ′(ζ )g(ζ )dζ

for z ∈ D and f ∈ H(D). The operators Jg and Ig are close companions because of their
relations to the multiplication operator Mg f (z) = g(z) f (z). To see this, use integration by
parts to obtain

Mg f = f (0)g(0) + Jg f + Ig f .

The discussion of Volterra-type operators Jg and Ig first arose in connection with semigroups
of composition operators—for further details and background, see [7] and also [8, 9] for these
types of operators acting on weighted Bergman spaces.

Let B(Hp) be the Banach algebra of bounded linear operators on the Hardy space Hp ,
where 0 < p < ∞. The two classes of Volterra-type inner derivations D(Jg) and D(Ig)

induced by g ∈ H(D) on B(Hp) are defined by

D(Jg) : B(Hp) → B(Hp), T �→ [Jg, T ]
(referred to as the Jg inner derivation) and

D(Ig) : B(Hp) → B(Hp), T �→ [Ig, T ]
(referred to as the Ig inner derivation).

We can now state our main results.

Theorem 1.1 For 0 < p < ∞, the Jg inner derivation D(Jg) on B(Hp) maps into the ideal
of compact operators if and only if g belongs to VMOA.

Theorem 1.2 For 0 < p < ∞, the Ig inner derivation D(Ig) on B(Hp) maps into the ideal
of compact operators if and only if g is a complex scalar.

The proofs of Theorems 1.1 and 1.2 are given in Sects. 3 and 4, respectively. In addition,
we describe compact intertwining relations for multiplication and composition operators in
Sect. 5.

Throughout the paper, we write A � B if there exists an absolute constant C > 0 such
that A ≤ C · B, and we write A ≈ B when A � B and B � A.

123
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2 Preliminaries

2.1 Compact intertwining relations

If X and Y are two quasi-Banach spaces, we denote byB(X , Y ) the collection of all bounded
linear operators from X to Y , and by K(X , Y ) the collection of all compact elements of
B(X , Y ), and by Q(X , Y ) the quotient space B(X , Y )/K(X , Y ).

For A ∈ B(X , X), B ∈ B(Y , Y ) and T ∈ B(X , Y ), we say that T intertwines A and B
in Q(X , Y ) (or T intertwines A and B compactly) if

T A = BT mod K(X , Y ) with T �= 0.

More intuitively, the compact intertwining relation is explained by the following commutative
diagram:

X
A−−−−→ X⏐⏐�T

⏐⏐�T

Y
B−−−−→ Y

mod K(X , Y ).

When X = Y and A = B, it is easy to see that the following two assertions are equivalent:

(i) T intertwines every A ∈ B(X) compactly.
(ii) The inner derivation D(T ) : B(X) → B(X) ranges in the ideal of compact operators.

From this point of view, we will study the compact intertwining relations for composition
operators and Volterra operators between different Hardy spaces, which are then used to
obtain our two main results (Theorems 1.1 and 1.2) as direct consequences. In this paper,
we also study the compact intertwining relations for composition operators and Volterra
operators, and multiplication operators from Hardy spaces to Bergman spaces.

In the series papers [10–12], Yuan, Tong and Zhou firstly investigate the compact inter-
twining relations on the Bergman spaces, bounded analytic function spaces and Bloch spaces
in the unit disk. By continuing this line of work, we characterize the compact intertwining
relations for composition operators and Volterra operators between different Hardy spaces.
Our main results on the Volterra-type inner derivation on B(Hp) then follow immediately.

2.2 Background onVolterra and composition operators

We collect some preliminary lemmas on boundedness and compactness of Volterra operators
and composition operators in this subsection. For 0 < β < ∞, recall that the weighted Bloch
space Bβ is the space of all f ∈ H(D) such that

‖ f ‖Bβ := sup
z∈D

(
1 − |z|2)β ∣∣ f ′(z)

∣∣ < ∞.

Notice that ‖·‖Bβ is a complete semi-norm onBβ , which isMöbius invariant.When equipped
with the norm

‖ f ‖ = | f (0)| + ‖ f ‖Bβ ,

the weighted Bloch space Bβ becomes a Banach space.
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Denote by Bβ
0 the subspace of Bβ consisting of those functions f ∈ Bβ for which

lim|z|→1

(
1 − |z|2)β ∣∣ f ′(z)

∣∣ = 0.

For δ ≥ 0, we define the space H∞,δ of analytic functions by

H∞,δ =
{

f ∈ H(D) : ‖ f ‖∞ = sup
z∈D

(
1 − |z|2)δ | f (z)| < ∞

}

and write H∞ for the space of non-weighted bounded analytic functions H∞,0. Further, we
let H∞,δ

0 be the subspace of H∞,δ consisting of f ∈ H∞,δ with

lim|z|→1

(
1 − |z|2)δ | f (z)| = 0.

Remark It is well-known that, for δ > 0,H∞,δ = B1+δ andH∞,δ
0 = B1+δ

0 (see, for example,
Proposition 7 of [13]).

Let p, q and s be real numbers such that 0 < p < ∞,−2 < q < ∞ and 0 < s < ∞.
We say that a function f ∈ H(D) belongs to the space F(p, q, s) if

‖ f ‖p
F(p,q,s) := sup

a∈D

∫
D

∣∣ f ′(z)
∣∣p (

1 − |z|2)q (
1 − |ψa(z)|2)s

dA(z) < ∞. (2.1)

The spacesF(p, q, s)were introduced in [14], and it was shown that many classical function
spaces can be identified asF(p, q, s)with suitable parameters. Further, it was proved in [15,
Theorem 1] that, when −1 < α < ∞, F(p, pα − 2, s) = Bα for every p > 0 and
s > 1 (see also Theorem 1.3 of [14]). For s = 1, we define BMOA type spaces by setting
BMOAα

p = F(p, pα − 2, 1). It is known that BMOA1
2 = BMOA. We recall that the

space VMOAα
p consists of those holomorphic functions f in D with

lim|a|→1

∫
D

∣∣ f ′(z)
∣∣p (

1 − |z|2)pα−2 (
1 − |ψa(z)|2) = 0. (2.2)

We now summarize further preliminary results in the following four lemmas. These results
are all known or can be obtained with slight modifications of existing results and their proofs.
For the first one, see Theorem 5 of [16].

Lemma 2.1 Let 0 < p, q < ∞, g ∈ H(D),−1 < α < ∞, and γ = α+2
q − 1

p .

(i) If p < q and γ + 1 ≥ 0, then Jg : Hp → Aq
α is bounded if and only if g ∈ B1+γ .

(ii) If p = q, then Jg : Hp → Aq
α is bounded if and only if

g ∈ BMOA1+(α+1)/p
p .

(iii) If p < q and γ + 1 ≥ 0, then Jg : Hp → Aq
α is compact if and only if g ∈ B1+γ

0 .
(iv) If p = q, then Jg : Hp → Aq

α is compact if and only if

g ∈ VMOA1+(α+1)/p
p .

The proof of the following lemma is similar to the proofs of Theorem 5 and Corollary 7
of [16].

Lemma 2.2 Let 0 < p, q < ∞, g ∈ H(D),−1 < α < ∞, and γ = α+2
q − 1

p .

123
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(i) If p ≤ q, then Ig : Hp → Aq
α is bounded if and only if g ∈ B1+γ .

(ii) If p ≤ q, then Ig : Hp → Aq
α is compact if and only if g ∈ B1+γ

0 .

The following assertions can be obtained from the main theorems of [17] and [18].

Lemma 2.3 Let 0 < p, q < ∞, g ∈ H(D),−1 < α < ∞, and γ = α+2
q − 1

p .

(i) If p < q and γ > 0, then Mg : Hp → Aq
α is bounded if and only if g ∈ B1+γ .

(ii) If p < q and γ = 0, then Mg : Hp → Aq
α is bounded if and only if g ∈ H∞.

(iii) If p = q, then Mg : Hp → Ap
α is bounded if and only if g ∈ BMOA1+(α+1)/p

p .

(iv) If p < q and γ > 0, then Mg : Hp → Aq
α is compact if and only if g ∈ B1+γ

0 .
(v) If p < q and γ = 0, then Mg : Hp → Aq

α is compact if and only if g ≡ 0.

(vi) If p = q = 2, then Mg : H2 → A2
α is compact if and only if g ∈ VMOA1+(α+1)/2

2 .

Finally, the following lemma summarizes the characterizations obtained in [19] for bound-
edness and compactness of the operators Jg and Ig and the multiplication operator Mg acting
from Hp to Hq .

Lemma 2.4 Let 0 < p, q < ∞, g ∈ H(D). Then

(i) If q
q+1 ≤ p < q, then Jg : Hp → Hq is bounded if and only if g ∈ B1+ 1

q − 1
p .

(ii) If p = q, then Jg : Hp → Hq is bounded if and only if g ∈ BMOA.
(iii) If p = q, then Ig(or Mg) : Hp → Hq is bounded if and only if g ∈ H∞.

(iv) If q
q+1 ≤ p < q, then Jg : Hp → Hq is compact if and only if g ∈ B1+ 1

q − 1
p

0 .
(v) If p = q, then Jg : Hp → Hq is compact if and only if g ∈ VMOA.
(vi) If p = q, then Ig(or Mg) : Hp → Hq is compact if and only if g ≡ 0.

2.3 Carlesonmeasures

In this subsection, we state the generalized Carleson measure theorem for Hp . A classical
theorem of Carleson [20, 21] states that the injection map from the Hardy spaceHp into the
measure space Lp(dμ) is bounded if and only if the positive measure μ on D is a bounded
Carleson measure. For 0 < s < ∞, a positive measure μ on D is a bounded s-Carleson
measure if

‖μ‖C Ms := sup
I

μ(S(I ))

|I |s < ∞,

where |I | denotes the arc length of a subarc I of T,

S(I ) =
{

reit ∈ D : eit ∈ I , 1 − |I | � r < 1
}

is the Carleson box based on I , and the supremum is taken over all subarcs I of T such that

|I | < 1. We associate to each a ∈ D\{0} the interval Ia =
{
ζ ∈ T : |ζ − a

|a| | ≤ 1−|a|
2

}
, and

denote by S(a) = S(Ia). A positive measure μ on D is a vanishing s-Carleson measure if
the limits

lim|I |→0

μ(S(I ))

|I |s = 0

123
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hold uniformly for I ∈ T. It is well known (see [22] and [23]) that μ on D is an s-Carleson
measure if and only if

sup
a∈D

∫
D

(
1 − |a|2
|1 − az|2

)s

dμ(z) < ∞. (2.3)

For z ∈ D and ϕ ∈ L1 (T), the Hardy-Littlewood maximal function is defined by

M(ϕ)(z) = sup
I

1

|I |
∫

I
|ϕ(ζ )||dζ |, z ∈ D,

where the supremum is taken over all arcs I ⊂ T for which z ∈ S(I ).
The following lemma follows from Theorem 2.1 of [24]. We simplify the result in the

one-dimensional case as follows.

Lemma 2.5 Let 0 < p ≤ q < ∞ and 0 < α < ∞ such that pα > 1. Let μ be a positive
Borel measure on D. Then

[
M

(
(·)1/α)]α : Lp (T) → Lq(μ) is bounded if and only if μ is a

q/p-Carleson measure. Moreover, we have

∥∥∥[
M

(
(·)1/α)]α∥∥∥q

Lp(T)→Lq (μ)
≈ sup

I

μ(S(I ))

|I |q/p
.

The estimates of the next result follow from the results of Luecking—see Theorem 3.1 of
[25].

Lemma 2.6 Let μ be a positive Borel measure on D and k ∈ N. If either 2 ≤ p = q or
0 < p < q < ∞, the following conditions are equivalent:

(i)
∫
D

| f (k)(z)|q dμ(z) � ‖ f ‖q
Hp for all f ∈ Hp.

(ii) μ(S(I )) � |I |(1+kp)q/p for all I .

The little oh version of the preceding result was obtained in Theorem 1 in [26] and can be
formulated as follows:

Lemma 2.7 Let μ be a positive Borel measure on D and k ∈ N. If either 2 ≤ p = q or
0 < p < q < ∞, the following conditions are equivalent:

(i) If
{

f j
}

is a bounded sequence in Hp and f j (z) → 0 for every z ∈ D, then

lim
j→∞

∫
D

∣∣∣ f (k)
j (z)

∣∣∣q
dμ(z) = 0.

(ii) The limits

lim|I |→0

μ (S(I ))

|I |(1+kp)q/p
= 0

hold uniformly for I ∈ T.

Remark 2.8 For the case k = 0, Lemma 2.6 and Lemma 2.7 hold true whenever 0 < p ≤
q < ∞ (see Theorem 3.4 of [27] and Theorem 9.4 of [28]).

123
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2.4 Area operators

If ζ ∈ T and γ > 2 are given, the Korányi approach region �γ (ζ ) with aperture γ /2 is
defined by

�(ζ ) := �γ (ζ ) =
{

z ∈ D : |ζ − z| <
γ

2
(1 − |z|)

}
.

For every z ∈ D, let us denote

I (z) = {ζ ∈ ∂D : z ∈ �(ζ )}.
It is clear that I (z) is an open arc on ∂D with center z/|z| whenever z �= 0. Moreover,
|I (z)| � 1 − |z|.

Letμ be a positive Borel measure onD and s > 0. The area operator As
μ acting on H (D)

is the sublinear operator defined by

As
μ( f )(ζ ) =

(∫
�(ζ )

| f (z)|s dμ(z)

(1 − |z|)
)1/s

Area operators are important both in analysis and geometry. They are related to, for example,
the nontangential maximal functions, Littlewood-Paley operators, multipliers, Poisson inte-
grals, and tent spaces. For the study of boundedness and compactness of area operators As

μ

on the Hardy space and weighted Bergman spaces in the unit disk, see [29], [30]. The next
estimate is the celebrated Calderón’s area theorem [31]. The variant we use can be found in
[32, Theorem 3.1] and [33, Theorem D].

Lemma 2.9 Suppose that f ∈ H(D) and 0 < p < ∞, then

‖ f ‖p
Hp ≈

∫
T

(∫
�(ζ )

| f ′(z)|2dA(z)

)p/2

|dζ |.

For the proof of the following lemma, see Theorem 3.4 of [29].

Lemma 2.10 Let 0 < p, q, s < ∞ and μ be a positive Borel measure on D. If 0 < p ≤ q <

∞, then

(i) As
μ : Hp → Lq is bounded if and only if μ is a

(
1 + s

p − s
q

)
-Carleson measure;

(ii) As
μ : Hp → Lq is compact if and only if μ is a compact

(
1 + s

p − s
q

)
-Carleson measure.

To characterize the compact intertwining relations for the operator Ig , we define the
following generalized area operator which is induced by a nonnegative measure μ and
0 < s < ∞:

Ãs
μ( f )(ζ ) =

(∫
�(ζ )

| f ′(z)|s dμ(z)

(1 − |z|)
)1/s

.

The following lemma is a key tool for the proof of Theorem 1.2.

Lemma 2.11 Let μ be a positive Borel measure on D, finite on compact subsets of D. Suppose
that 0 < p ≤ q < ∞ and 0 < s < ∞. We have the following two statements:

(i) If Ãs
μ : Hp → Lq is bounded then μ is a

(
1 + s

p − s
q + s

)
-Carleson measure;

(ii) If Ãs
μ : Hp → Lq is compact then μ is a vanishing

(
1 + s

p − s
q + s

)
-Carleson measure.

123
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Further, if p, q, s satisfy one of the following conditions:

(a) q = s and either 2 ≤ p = q < ∞ or 0 < p < q < ∞;
(b) q > s > p2q/(pq + q − p).

Then the two necessary conditions above in (i) and (ii) are also sufficient.

Proof The proof is similar to the proof of Theorem 4 in [34]. The difference is that we need
to consider the derivatives of the test functions. We provide the details for completeness.

For a ∈ D, we consider the following test function

fa,p(z) = (1 − |a|)1/p

(1 − az)2/p
, z ∈ D. (2.4)

By Forelli-Rudin estimates (see [35]), we see that fa,p ∈ Hp , ‖ fa,p‖Hp ≈ 1. In addition, it
is easy to see that

|1 − az| ≈ 1 − |a| ≈ |Ia |, z ∈ S(a)

and

| f ′
a,p(z)| ≈ 1

(1 − |a|)1/p+1 , z ∈ S(a). (2.5)

First we prove (i). We start with the case q = s. By (2.5) and Fubini’s theorem, we get

μ(S(a))

|Ia |s/p+s
�

∫
S(a)

| f ′
a,p(z)|sdμ(z)

≤
∫
D

| f ′
a,p(z)|sdμ(z)

=
∫
T

(∫
�(ζ )

| f ′
a,p(z)|s

dμ(z)

(1 − |z|)
)

|dζ |

= ∥∥ Ãs
μ fa,p

∥∥q
Lq (T)

� ‖ fa,p‖q
Hp � 1,

(2.6)

where the first equality comes from the fact that
∫
T

χ�(ζ )(z)|dζ | ≈ 1 − |z|. Therefore, μ is

a
(

s
p + s

)
-Carleson measure.

Next, we consider the case q > s. We can see that

∣∣ fa,(q/s)′(ζ )
∣∣ ≈ 1

(1 − |a|2)(1−s/q)
(2.7)

as ζ ∈ I (z), and z ∈ S(a). Note that Ãs
μ : Hp → Lq is bounded. By (2.5), (2.7), Fubini’s

theorem and Hölder inequality, we obtain that

μ(S(a))

|Ia |1+s/p−s/q+s
�

∫
S(a)

| f ′
a,p(z)|s

(
1

(1 − |z|)
∫

I (z)

∣∣ fa,(q/s)′(ζ )
∣∣ |dζ |

)
dμ(z)

≤
∫
T

∣∣ fa,(q/s)′(ζ )
∣∣ (∫

�(ζ )

∣∣∣ f ′
a,p(z)

∣∣∣s dμ(z)

(1 − |z|)
)

|dζ |

≤ ∥∥ fa,(q/s)′
∥∥H(q/s)′

∥∥ Ãs
μ fa,p

∥∥s
Lq (T)

� ‖ fa,p‖s
Hp � 1.

(2.8)

Thus μ is a (1 + s/p − s/q + s)-Carleson measure.
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Finally, we consider the case q < s. Let 1 < β < α satisfing β
α

= q
s . By Fubini’s theorem

and Hölder’s inequality, we get

μ(S(a)) =
∫
D

χS(a)(z)dμ(z)

≈ (1 − |a|)s/p+s
∫
D

χS(a)(z)
∣∣∣ f ′

a,p(z)
∣∣∣s 1

(1 − |z|)
∫

I (z)
|dζ |dμ(z)

= (1 − |a|)s/p+s
∫
T

(∫
�(ζ )

χS(a)(z)
∣∣∣ f ′

a,p(z)
∣∣∣s dμ(z)

(1 − |z|)
)1/α+1/α′

|dζ |

≤ (1 − |a|) s/p+s
α

(∫
T

(∫
�(ζ )

∣∣∣ f ′
a,p(z)

∣∣∣s dμ(z)

(1 − |z|)
)β/α

|dζ |
)1/β

×
(∫

T

(∫
�(ζ )

χS(a)(z)
dμ(z)

(1 − |z|)
)β ′/α′

|dζ |
)1/β ′

. (2.9)

According to the estimate in (3.6) of [24], we can estimate the second factor on the right side
of the above inequality as follows:

(∫
T

(∫
�(ζ )

χS(a)(z)
dμ(z)

(1 − |z|)
)β ′/α′

|dζ |
)β/β ′

≤ μ(S(a))β/β ′
(
sup
z∈D

μ(S(a) ∩ S(z))

(1 − |z|)

)β/α′−β/β ′

= μ(S(a))β−1

(
sup
z∈D

μ(S(a) ∩ S(z))

(1 − |z|)

)β/α′−β/β ′

.

Inserting this into (2.4), we have

μ(S(a)) � (1 − |a|)(s/p+s) β
α

∥∥ Ãs
μ fa,p

∥∥q
Lq ·

(
sup
z∈D

μ(S(a) ∩ S(z))

(1 − |z|)

)β/α′−β/β ′

.

We define dμr (z) = χD(0,r)dμ(z) for 0 < r < 1. It is easy to see that∥∥∥̃As
μr

∥∥∥Hp→Lq
≤ ∥∥ Ãs

μ

∥∥
Hp→Lq .

Putting these estimates together, we have

μr (S(a))

|Ia |1+s/p−s/q+s

�
∥∥∥̃As

μr
fa,p

∥∥∥q

Lq
(1 − |a|) q

p +q−1−s/p+s/q−s

(
sup
z∈D

μr (S(a) ∩ S(z))

(1 − |z|)

)β/α′−β/β ′

=
∥∥∥̃As

μr
fa,p

∥∥∥q

Lq

(
sup

z:S(z)⊂S(a)

μr (S(a) ∩ S(z))

(1 − |a|2)s(q−p+pq)/(pq)(1 − |z|)

)1−q/s

�
∥∥∥̃As

μr
fa,p

∥∥∥q

Lq

(
sup

z:S(z)⊂S(a)

μr (S(z))

(1 − |z|)(1+s/p−s/q+s)

)1−q/s

, a ∈ D.
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Consequently,

sup
a∈D

μr (S(a))

|Ia |1+s/p−s/q+s

�
∥∥ Ãs

μ

∥∥q
Hp→Lq

(
sup
a∈D

sup
z:S(z)⊂S(a)

μr (S(z))

(1 − |z|)(1+s/p−s/q+s)

)1−q/s

= ∥∥ Ãs
μ

∥∥q
Hp→Lq

(
sup
a∈D

μr (S(a))

(1 − |a|)(1+s/p−s/q+s)

)1−q/s

.

Therefore,

sup
a∈D,r∈(0,1)

μr (S(a))

|Ia |1+s/p−s/q+s
�

∥∥ Ãs
μ

∥∥s
Hp→Lq .

It then follows from Fatou’s lemma by letting r → 1− that

sup
a∈D

μ(S(a))

|Ia |1+s/p−s/q+s
�

∥∥ Ãs
μ

∥∥s
Hp→Lq . (2.10)

Thus μ is a (1 + s/p − s/q + s)-Carleson measure.
Nowwe prove (ii). Suppose Ãs

μ : Hp → Lq is compact. For each a ∈ D, let fa,p be given
by (2.4). It is noted that

∥∥ fa,p
∥∥Hp � 1 uniformly in a ∈ D and

{
fa,p

}
converges uniformly

to zero on compact subsets of D, as |a| → 1. Hence

lim|a|→1

∥∥Ãs
μ

(
fa,p

)∥∥
Lq = 0.

Inequalities (2.6), (2.8) and (2.10) imply that

lim|a|→1

μ(S(a))

|Ia |1+s/p−s/q+s
= 0.

Thus μ is a vanishing (1 + s/p − s/q + s)-Carleson measure.
To prove sufficiency in our last assertion, suppose first that condition (a) holds in our

assumption. By Fubini’s theorem and Lemma 2.6, we get

∥∥ Ãs
μ f

∥∥q
Lq (T)

=
∫
T

(∫
�(ζ )

| f ′(z)|s dμ(z)

(1 − |z|)
)

|dζ |

=
∫
D

| f ′(z)|sdμ(z)

≤ ‖μ‖C M(1+p) s
p
‖ f ‖q

Hp .

(2.11)

Hence Ãs
μ : Hp → Lq is bounded.

Suppose next that q > s >
p2q

pq+q−p . Let t = s + (1 − s/q)/(1 + 1/p) > s. Then p < t

and (t/s)′/(q/s)′ = s + 1+ s/p − s/q . Let M be the Hardy-Littlewood maximal function.
Then by Lemma 2.5 we have

‖M‖(t/s)′
L(q/s)′ (T)→L(t/s)′ (μ)

≈ sup
a∈D

μ(S(a))

(1 − |a|)s+1+s/p−s/q
. (2.12)
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Thus, by duality’s theorem, Fubini’s Theorem, Hölder’s inequality and (2.4), we have that
∥∥ Ãs

μ f
∥∥s
Lq (T)

= ∥∥( Ãs
μ f )s

∥∥
Lq/s (T)

≤ sup
‖h‖L(q/s)′ ≤1

∫
T

|h(ζ )|
(∫

�(ζ )

∣∣ f ′(z)
∣∣s dμ(z)

1 − |z|
)

|dζ |

= sup
‖h‖L(q/s)′ ≤1

∫
D

∣∣ f ′(z)
∣∣s

(
1

|I |
∫

I (z)
|h(ζ )||dζ |

)
dμ(z)

≤ sup
‖h‖L(q/s)′ ≤1

‖ f ′‖s
Lt (μ)‖M(h)‖L(t/s)′ (μ)

≤ sup
‖h‖L(q/s)′ ≤1

‖D‖s
Hp→Lt (μ)‖ f ‖s

Hp ‖M‖L(q/s)′→L(t/s)′ (μ)
‖h‖L(q/s)′

�
(
sup
a∈D

μ(S(a))

(1 − |a|)s+1+s/p−s/q

)s/t+1/(t/s)′

‖ f ‖s
Hp . (2.13)

where D denotes the differentiation operator. Hence Ãs
μ : Hp → Lq is bounded.

Next we consider compactness. Suppose that q > s >
p2q

pq+q−p and let μ be a vanishing
(s + 1+ s/p − s/q)-Carleson measure. Then μ is a (s + 1+ s/p − s/q)-Carleson measure,
and so a finite measure in D. Let t = s + (1 − s/q)/(1 + 1/p) > s, then (1 + p)t/p =
s + 1 + s/p − s/q . By Lemma 2.7, D : Hp → Lt (μ) is compact. Let { fn} be a bounded
sequence inHp . Thenwe can choose a subsequence

{
fnk

}
that uniformly on compact subsets

to some f ∈ Hp and a subsequence
{

f ′
nk

}
that converges in Lt (μ). Write gnk = fnk − f .

By (2.13), we have
∥∥ Ãs

μ(gnk )
∥∥s
Lq � ‖g′

nk
‖s
Lt (μ).

Then

lim
k→∞

∥∥ Ãs
μ

(
gnk

)∥∥s
Lq = 0. (2.14)

Two applications of Minkowski’s inequality gives
∣∣|| Ãs

μ

(
fnk

) ||Lq − || Ãs
μ( f )||Lq

∣∣ ≤ ∥∥ Ãs
μ

(
gnk

)∥∥
Lq → 0, k → ∞.

Together with (2.14), we get

lim
k→∞

∥∥ Ãs
μ

(
fnk

)∥∥
Lq = ∥∥ Ãs

μ ( f )
∥∥
Lq .

Moreover, since
{

fnk

}
converges uniformly on compact subsets of D to f , by Theorem 5.3

in [36], then ϕk(ζ ) =
(∫

�(ζ )

∣∣ f ′
nk

(z)
∣∣s dμ(z))

1−|z|
)1/s

converges to

ϕ(ζ ) =
(∫

�(ζ )

| f ′(z)|s dμ(z)

1 − |z|
)1/s

for each ζ ∈ T. Therefore by Lemma 1 in [28] yields

lim
k→∞

∥∥ Ãs
μ

(
fnk

) − Ãs
μ( f )

∥∥
Lq = lim

k→∞ ‖ϕk − ϕ‖Lq = 0,
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and thus Ãs
μ : Hp → Lq is compact.

Suppose that condition (a) holds, by (2.11), we also have that

lim
k→∞

∥∥ Ãs
μ

(
gnk

)∥∥
Lq = 0,

by arguing as in the previous case we see that Ãs
μ : Hp → Lq is compact. ��

3 Proof of Theorem 1.1

In this section, we first consider the compact intertwining relation for Jg and Cϕ from Hp

to Hq . The proof of Theorem 1.1 then follows immediately as a corollary. We also consider
the compact intertwining relation for Jg and Cϕ from Hp to Aq

α at the end of this section.
To proveTheorem1.1, forϕ ∈ S(D) and g, h ∈ H(D), we consider the following operator

Tϕ,g,h f (z) =
∫ ϕ(z)

0
f (w)g′(w)dw −

∫ z

0
f (ϕ(w))h′(w)dw

for f ∈ Hp and z ∈ D.
To characterize the properties of Tϕ,g,h , we define another integral operator as follows:

Ip,q
ϕ (u)(a) =

∫
D

(
1 − |a|2

|1 − āϕ(z)|2
)1+ 2

p − 2
q

|u(z)|2(1 − |ϕ(z)|2) dA(z).

Proposition 3.1 Let 0 < p ≤ q < ∞. Assume that ϕ ∈ Aut(D), and g, h ∈ H(D).

(i) Tϕ,g,h is a bounded operator from Hp to Hq if and only if

sup
a∈D

Ip,q
ϕ

(
(g ◦ ϕ − h)′

)
(a) < ∞.

(ii) Tϕ,g,h is a compact operator from Hp to Hq if and only if Tϕ,g,h is bounded and

lim|a|→1
Ip,q
ϕ

(
(g ◦ ϕ − h)′

)
(a) = 0.

Proof First, by Lemma 2.9, since (Tϕ,g,h f )′(z) = (g ◦ ϕ − h)′(z) f (ϕ(z)),

‖Tϕ,g,h f ‖q
Hq ≈

∫
T

(∫
�(ζ )

|(g ◦ ϕ − h)′(z)Cϕ( f )(z)|2dA(z)

)q/2

|dζ |. (3.1)

Since ϕ ∈ Aut(D), there is a point b ∈ D such that

ϕ(z) = eiθψb(z) = eiθ b − z

1 − bz
, θ ∈ [0, 2π).

For z ∈ �(ζ ) with ζ1 = ψb(ζ ), we have

|ζ1 − ψb(z)| = |ψb(ζ ) − ψb(z)|

=
∣∣∣∣ 1 − |b|2
(1 − bζ )(1 − bz)

∣∣∣∣ |ζ − z|

<
γ

2

∣∣∣∣ (1 − |b|2)(1 − |z|)
(1 − bζ )(1 − bz)

∣∣∣∣
<

2γ

1 − |b| (1 − |ψb(z)|).

(3.2)
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Set η = eiθ ζ1. By (3.2), we have

|η − ϕ(z)| <
2γ

1 − |b| (1 − |ϕ(z)|).

Thus, ϕ(z) ∈ �γ ′(η) with γ ′ = 4γ
1−|b| > 1. Let w = ϕ(z), μϕ = νϕ ◦ ϕ−1, and dνϕ(z) =∣∣(g ◦ ϕ − h)′(z)

∣∣2 d A(z) in (3.1). Then

‖Tϕ,g,h f ‖q
Hq ≈

∫
T

(∫
�γ ′ (η)

| f (w)|2 (1 − |w|)dμϕ(w)

1 − |w|2
)q/2

|dη|

=
∥∥∥∥∥∥
(∫

�γ ′ (η)

| f (w)|2 dμ(w)

1 − |w|2
)1/2

∥∥∥∥∥∥
q

Lq (T)

= ∥∥A2
μ( f )

∥∥q

Lq (T)
,

where dμ(w) = (1 − |w|2)dμϕ(w) and the last identity follows from the observation on
page 3 of [37].

Hence Tϕ,g,h : Hp → Hq is bounded if and only if A2
μ : Hp → Lq (T) is bounded.

Thus, Lemma 2.10 (i) implies that dμ is a (1 + 2
p − 2

q )-Carleson measure. By (2.3), this is
equivalent to

sup
a∈D

∫
D

(
1 − |a|2

|1 − āw|2
)1+ 2

p − 2
q

(1 − |w|2)dμϕ(w) < ∞.

Changing the variable back to z proves (i).
Similarly we can prove (ii) using Lemma 2.10 (ii). We omit the details. ��

Now we are ready to characterize the compact intertwining relation for Jg and Cϕ from
Hp to Hq .

Theorem 3.2 Let 0 < p ≤ q < ∞.

(i) If q
q+1 ≤ p < q, then Jg : Hp → Hq compactly intertwines all composition operators

Cϕ which are bounded both on Hp and Hq if and only if g ∈ B1+ 1
q − 1

p
0 ;

(ii) If p = q, then Jg : Hp → Hp compactly intertwines all composition operators Cϕ

which are bounded on Hp if and only if g ∈ VMOA.

Proof First, we consider (i). If g ∈ B1+ 1
q − 1

p
0 , the operator Jg is compact from Hp to Hq by

Lemma 2.4. Hence

Cϕ

∣∣Hq Jg
∣∣
Hp→Hq − Jg

∣∣Hp→Hq Cϕ

∣∣
Hp

is compact for every Cϕ bounded both on Hp and Hq .
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For the necessary part of (i), by (i) of Lemma 2.4, Jg is bounded from Hp to Hq if and

only if g ∈ B1+ 1
q − 1

p . Putting ϕ(z) = eiθ z for θ ∈ [0, 2π], by Proposition 3.1 (ii), we have

0 = lim|a|→1

∫
D

(
1 − |a|2∣∣1 − āeiθ z

∣∣2
)1+ 2

p − 2
q ∣∣∣eiθ g′ (eiθ z

)
− g′(z)

∣∣∣2 (1 − |z|2) dA(z)

= lim|a|→1

∫
D

(
1 − |ψa(z)|2)1+ 2

p − 2
q

∣∣∣eiθ g′ (eiθ z
)

− g′(z)
∣∣∣2 (1 − |z|2) 2

q − 2
p dA(z)

≈ lim|a|→1
(1 − |a|2)1+ 1

q − 1
p

∣∣∣eiθ g′ (eiθa
)

− g′(a)

∣∣∣ , (3.3)

where the last line follows from (2.1).
We estimate the upper bound of last formula in (3.3) as follows

(1 − |z|2)1+ 1
q − 1

p

∣∣∣eiθ g′ (eiθ z
)

− g′(z)
∣∣∣

≤ (1 − |eiθ z|2)1+ 1
q − 1

p

∣∣∣g′ (eiθ z
)∣∣∣ + (1 − |z|2)1+ 1

q − 1
p
∣∣g′(z)

∣∣
≤ 2‖g‖

B1+ 1
q − 1

p
< ∞,

so the upper bound for the estimate in (3.3) is independent of θ .
We write g(z) = ∑∞

n=0 anzn and integrate the right-hand side of (3.3) with respect to θ

from 0 to 2π as follows

0 =
∫ 2π

0
lim|z|→1

(1 − |z|2)1+ 1
q − 1

p

∣∣∣eiθ g′ (eiθ z
)

− g′(z)
∣∣∣ dθ

= lim|z|→1

∫ 2π

0
(1 − |z|2)1+ 1

q − 1
p

∣∣∣eiθ g′ (eiθ z
)

− g′(z)
∣∣∣ dθ

= lim|z|→1
(1 − |z|2)1+ 1

q − 1
p

∫ 2π

0

∣∣∣∣∣
∞∑

n=1

nanzn−1 (
einθ − 1

)∣∣∣∣∣ dθ

≥ lim|z|→1
(1 − |z|2)1+ 1

q − 1
p

∣∣∣∣∣
∞∑

n=1

nanzn−1
∫ 2π

0

(
einθ − 1

)
dθ

∣∣∣∣∣
= 2π lim|z|→1

(1 − |z|2)1+ 1
q − 1

p
∣∣g′(z)

∣∣ ,

where the dominated convergence theorem is applied to the second line. Thus g ∈ B1+ 1
q − 1

p
0 .

Next, we consider (ii). If g ∈ VMOA, we can see Jg is compact on Hp by Lemma 2.4.
Hence

Cϕ

∣∣Hp Jg
∣∣
Hp→Hp − Jg

∣∣Hp→Hp Cϕ

∣∣
Hp

is compact for every Cϕ bounded on Hp .
For the necessary part of (ii), by (ii) of Lemma 2.4, Jg is bounded on Hp if and only if g

∈ BMOA. Putting ϕ(z) = eiθ z for θ ∈ [0, 2π ], by Proposition 3.1 (ii), we have

0 = lim|a|→1

∫
D

1 − |a|2∣∣1 − āeiθ z
∣∣2

∣∣∣eiθ g′ (eiθ z
)

− g′(z)
∣∣∣2 (1 − |z|2) dA(z)

= lim|a|→1

∫
D

(1 − |ψa(z)|2)
∣∣∣eiθ g′ (eiθ z

)
− g′(z)

∣∣∣2 dA(z).

(3.4)
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Similarly to (i), we obtain an upper bound for (3.4) as follows∫
D

(1 − |ψa(z)|2)
∣∣∣eiθ g′ (eiθ z

)
− g′(z)

∣∣∣2 dA(z)

≤
∫
D

(
1 − |ψa(eiθ z)|2

) ∣∣∣g′ (eiθ z
)∣∣∣2 dA(z)

+
∫
D

(
1 − |ψa(z)|2) ∣∣g′(z)

∣∣2 dA(z)

≤ 2‖g‖BMOA < ∞,

where the last line follows from (2.1). Hence, (3.4) has an upper bound independent of θ .
Again, write g(z) = ∑∞

n=0 anzn , and integrate the right-hand side of (3.4) with respect
to θ from 0 to 2π as follows

0 =
∫ 2π

0
lim|a|→1

∫
D

(1 − |ψa(z)|2)
∣∣∣eiθ g′ (eiθ z

)
− g′(z)

∣∣∣2 dA(z)dθ

= lim|a|→1

∫ 2π

0

∫
D

(1 − |ψa(z)|2)
∣∣∣eiθ g′ (eiθ z

)
− g′(z)

∣∣∣2 dA(z)dθ

= lim|a|→1

∫
D

(1 − |ψa(z)|2)
∫ 2π

0

∣∣∣∣∣
∞∑

n=1

nanzn−1 (
einθ − 1

)∣∣∣∣∣
2

dθ dA(z)

≥ lim|a|→1

∫
D

(1 − |ψa(z)|2)
∣∣∣∣∣

∞∑
n=1

nanzn−1
∫ 2π

0

(
einθ − 1

)
dθ

∣∣∣∣∣
2

dA(z)

≈ lim|a|→1

∫
D

(1 − |ψa(z)|2) ∣∣g′(z)
∣∣2 dA(z),

where the dominated convergence theorem and Fubini’s theorem are applied to the second
and third lines, respectively. Thus, by (1.1), we obtain g ∈ VMOA. ��

We can now prove our first main theorem.

Proof of Theorem 1.1 By (ii) of Theorem 3.2, [Cϕ, Jg] ∈ K(Hp) for every Cϕ ∈ B(Hp) if
and only if g ∈ VMOA, which, according to Lemma 2.4, is equivalent to Jg ∈ K(Hp).
Hence D(Jg) maps bounded operators into K(Hp) if and only if Jg is a compact operator. ��

In the remaining part of this section, we characterize the compact intertwining relation
for Jg and Cϕ from Hp to Aq

α . For this purpose, we define the integral operator

IIp,q
ϕ,α(u)(a) =

∫
D

(
1 − |a|2

|1 − āϕ(z)|2
) q

p

|u(z)|q(1 − |z|2)α dA(z).

Using Remark 2.8, the following theorem can be proved similarly to Theorem 1 and
Corollary 1 in [38], and hence we omit the proof.

Theorem 3.3 Let 1 < p ≤ q < ∞ and α > −1. Assume that u ∈ H(D) and ϕ ∈ S(D).

(i) The weighted composition operator uCϕ is bounded from Hp into Aq
α if and only if

sup
a∈D

IIp,q
ϕ,α(u)(a) < ∞.
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(ii) The weighted composition operator uCϕ is compact from Hp into Aq
α if and only if uCϕ

is bounded and

lim|a|→1
IIp,q

ϕ,α(u)(a) = 0.

Using Corollary 4.3 in [11] and Theorem 3.3, the following result can be obtained imme-
diately.

Corollary 3.4 Let 1 < p ≤ q < ∞ and α > −1. Assume that ϕ ∈ S(D) and g, h ∈ H(D).

(i) Tϕ,g,h is a bounded operator from Hp into Aq
α if and only if

sup
a∈D

IIp,q
ϕ,q+α

(
(g ◦ ϕ − h)′

)
(a) < ∞.

(ii) Tϕ,g,h is a compact operator from Hp into Aq
α if and only if Tϕ,g is bounded and

lim|a|→1
IIp,q

ϕ,q+α

(
(g ◦ ϕ − h)′

)
(a) = 0.

Proposition 3.5 Let 1 < p ≤ q < ∞, g ∈ H(D),−1 < α < ∞, and γ = α+2
q − 1

p . Then
we have the following two assertions.

(i) If p < q and γ + 1 ≥ 0, then Jg : Hp → Aq
α compactly intertwines all composition

operators Cϕ which are bounded both on Hp and Aq
α if and only if g ∈ B1+γ

0 .
(ii) If p = q, then Jg : Hp → Ap

α compactly intertwines all composition operators Cϕ

which are bounded both on Hp and Ap
α if and only if g ∈ VMOA1+(α+1)/p

p .

Proof The proof is similar to that of Theorem 3.2 and hence we omit it. ��

4 Proof of Theorem 1.2

For ϕ ∈ S(D) and f , u ∈ H(D), a weighted differential composition operator is defined by

uC ′
ϕ f := u · ( f ◦ ϕ)′.

For a similar role that the operator Tϕ,g,h played in the previous section,we define the operator

Sϕ,g,h f (z) =
∫ ϕ(z)

0
f ′(w)g(w)dw −

∫ z

0
( f ◦ ϕ)′(w)h(w)dw.

and the integral operator

IIIp,q
ϕ (u)(a) =

∫
D

(
1 − |a|2

|1 − āϕ(z)|2
)(3+ 2

p − 2
q )

|u(z)|2(1 − |ϕ(z)|2) dA(z),

which we use to characterize the properties of Sϕ,g,h . Further, as in the previous section, we
describe boundedness and compactness of Sϕ,g,h : Hp → Hq in terms of the generalized
area operators, which leads to a simple proof of Theorem 1.2. Finally, at the end of this
section, we consider the compact intertwining relation for Ig and Cϕ from Hp to Aq

α .
We start with the following characterization, which is the main ingredient in the proof of

Theorem 1.2.

Proposition 4.1 Assume that ϕ ∈ Aut(D), and g, h ∈ H(D). Let 0 < p ≤ q < ∞. We have
the following two assertions:
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(i) If Sϕ,g,h is a bounded operator from Hp to Hq then

sup
a∈D

IIIp,q
ϕ

[
(g ◦ ϕ − h)ϕ′] (a) < ∞.

(ii) If Sϕ,g,h is a compact operator from Hp to Hq then

lim|a|→1
IIIp,q

ϕ

[
(g ◦ ϕ − h)ϕ′] (a) = 0.

Moreover, if p, q satisfy one of the following conditions:

(a) p ≤ q = 2;
(b) q > 2 > p2q/(pq + q − p).

Then the two conditions above in (i) and (ii) are also sufficient.

Proof We note that

(
Cϕ Ig − IhCϕ

)
f (z) = Cϕ

(∫ z

0
f ′(w)g(w)dw

)
− Ih( f ◦ ϕ)(z)

=
∫ ϕ(z)

0
f ′(w)g(w)dw −

∫ z

0
( f ◦ ϕ)′(w)h(w)dw,

thus, by Lemma 2.9, we get

‖Sϕ,g,h f ‖q
Hq ≈

∫
T

(∫
�(ζ )

|(g ◦ ϕ − h)C ′
ϕ( f )(z)|2dA(z)

)q/2

|dζ |.

Let w = ϕ(z), μϕ = νϕ ◦ ϕ−1, and dνϕ(z) = ∣∣(g ◦ ϕ − h)(z)ϕ′(z)
∣∣2 d A(z). Then

‖Sϕ,g,h f ‖q
Hq ≈

∫
T

(∫
�γ ′ (η)

| f ′(w)|2 (1 − |w|)dμϕ(w)

1 − |w|

)q/2

|dη|

=
∥∥∥∥∥∥
(∫

�γ ′ (η)

| f ′(w)|2 dμ(w)

1 − |w|

)1/2
∥∥∥∥∥∥

q

Lq (T)

=
∥∥∥ Ã2

μ( f )

∥∥∥q

Lq (T)
,

where dμ(w) = (1 − |w|)dμϕ(w) and γ ′ is chosen as in the proof of Proposition 3.1.
Hence Sϕ,g,h : Hp → Hq is bounded if and only if Ã2

μ : Hp → Lq (T) is bounded.

Thus, Lemma 2.11 (i) implies that dμ is a (3 + 2
p − 2

q )-Carleson measure. By (2.3), this is
equivalent to

sup
a∈D

∫
D

((
1 − |a|2)

|1 − āw|2
)(3+ 2

p − 2
q )

(1 − |w|)dμϕ(w) < ∞.

Changing the variable back to z completes the proof of (i).
Similarly, we can prove (ii) and sufficiency from Lemma 2.11. We omit the details. ��

We are now ready to prove Theorem 1.2.
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Proof of Theorem 1.2 Let 0 < p < ∞, and suppose that D(Ig) maps B(Hp) into the ideal
of compact operators. Let ϕ(z) = eiθ z for θ ∈ [0, 2π ]. Then

Sϕ,g,g = [Cϕ, Ig] ∈ K(Hp).

Therefore, by Proposition 4.1 (ii),

0 = lim|a|→1

∫
D

(
1 − |a|2∣∣1 − āeiθ z

∣∣2
)3 ∣∣∣g (

eiθ z
)

− g(z)
∣∣∣2 (1 − |z|2) dA(z)

≈ lim|a|→1

∣∣∣g (
eiθa

)
− g(a)

∣∣∣2 (
1 − |a|2)0 ,

where the last line follows from Lemmas 8 and 9 of [38]. Thus, by the uniqueness theorem,
the function g is a complex scalar.

Conversely, if g is a complex scalar c, then Ig = Mc and clearly

D(Ig)T = [Mc, T ] = 0 ∈ K(Hp)

for every T ∈ B(Hp), which completes the proof.
��

In the remaining part of this section, we characterize the compact intertwining relation
for Ig and Cϕ fromHp to Aq

α . We first give a result on the boundedness and compactness of
uC ′

ϕ from Hp to Aq
α . To this end, we define another integral operator as follows

IVp,q
ϕ,α(u)(a) :=

∫
D

(
1 − |a|2

|1 − āϕ(z)|2
)(1+p)q/p ∣∣u(z)ϕ′(z)

∣∣q
(1 − |z|2)α dA(z).

Theorem 4.2 Suppose that either 2 ≤ p = q or 0 < p < q < ∞, and let α > −1,
u ∈ H(D) and ϕ ∈ S(D).

(i) The operator uC ′
ϕ : Hp → Aq

α is bounded if and only if

sup
a∈D

IVp,q
ϕ,α(u)(a) < ∞.

(ii) The operator uC ′
ϕ : Hp → Aq

α is compact if and only if uC ′
ϕ is bounded and

lim|a|→1
IVp,q

ϕ,α(u)(a) = 0.

Proof By definition, uC ′
ϕ is bounded from Hp into Aq

α if and only if
∥∥(

uC ′
ϕ

)
f
∥∥q
Ap

α
� ‖ f ‖q

Hp ,

for all f ∈ Hp . Changing variables w = ϕ(z) yields∫
D

| f ′(w)|q dμu,ϕ(w) � ‖ f ‖q
Hp , (4.1)

where μu,ϕ = νu,ϕ ◦ ϕ−1 and dνu,ϕ(z) = ∣∣u(z)ϕ′(z)
∣∣q

(1 − |z|2)α dA(z). Hence by (2.3),
(4.1) and Lemma 2.6, we have

sup
a∈D

∫
D

(
1 − |a|2

|1 − āw|2
)(1+p)q/p

dμu,ϕ(w) < ∞.
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Changing the variable back to z completes the proof of (i).
The proof (ii) is very similar to (i), and we just need Lemma 2.7 to obtain the compactness

of uC ′
ϕ from Hp into Aq

α . ��
By a direct calculation and Theorem 4.2, the following corollary can be proved similarly

to Corollary 3.4, and hence we omit the proof.

Corollary 4.3 Suppose that either 2 ≤ p = q or 0 < p < q < ∞, and let α > −1,
ϕ ∈ S(D), and g, h ∈ H(D).

(i) Sϕ,g,h is a bounded operator from Hp into Aq
α if and only if

sup
a∈D

IVp,q
ϕ,q+α(g ◦ ϕ − h)(a) < ∞.

(ii) Sϕ,g,h is a compact operator on Hp into Aq
α if and only if Sϕ,g is bounded and

lim|a|→1
IVp,q

ϕ,q+α(g ◦ ϕ − h)(a) = 0.

Proposition 4.4 Suppose that either 2 ≤ p = q or 0 < p < q < ∞, and let
g ∈ H(D),−1 < α < ∞, and γ = α+2

q − 1
p . Then Ig : Hp → Aq

α compactly inter-

twines all composition operators Cϕ which are bounded both on Hp and Aq
α if and only if g

∈ B1+γ
0 .

Proof This is similar to the proof of Theorem 3.2 and hence we omit the details. ��

5 Compact intertwining relation forMg and C' fromHp toAq
˛

In this section, we discuss the compact intertwining relations for the multiplication opera-
tors Mg and composition operators Cϕ from Hp to Aq

α . To this end, we first characterize
boundedness and compactness of

Nϕ,g,h := Cϕ Mg − MhCϕ,

which is a linear operator from Hp to Aq
α .

Corollary 5.1 Let 1 < p ≤ q < ∞ and α > −1. Assume that u ∈ H(D) and ϕ ∈ S(D).

(i) The multiplication operator Mu is bounded from Hp into Aq
α if and only if

sup
a∈D

IIp,q
eiθ z,α

(u)(a) ≈ sup
a∈D

|u(a)|(1 − |a|2)γ < ∞.

(ii) The multiplication operator Mu is compact from Hp into Aq
α if and only if

lim sup
|a|→1

IIp,q
eiθ z,α

(u)(a) ≈ lim sup
|a|→1

|u(a)|(1 − |a|2)γ = 0,

where γ = (α + 2)/q − 1/p.

Proof By Lemma 8 and Lemma 9 in [38], we get

IIp,q
id,α(u)(a) = IIp,q

eiθ z,α
(u)(a) ≈ sup

a∈D
|u(a)|(1 − |a|2)γ .

Note that Mu = uCid where id(z) ≡ z is the identity map ofD. Hence by setting ϕ(z) = eiθ z
in Theorem 3.3, we can prove (i) and (ii). ��
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Corollary 5.2 Let 1 < p ≤ q < ∞ and α > −1. Assume that ϕ ∈ S(D) and g, h ∈ H(D).

(i) The operator Nϕ,g,h is a bounded operator from Hp into Aq
α if and only if

sup
a∈D

IIp,q
ϕ,α (g ◦ ϕ − h) (a) < ∞.

(ii) The operator Nϕ,g,h is a compact operator from Hp into Aq
α if and only if Nϕ,g,h is

bounded and

lim|a|→1
IIp,q

ϕ,α (g ◦ ϕ − h) (a) = 0.

Proof We note that(
Cϕ Mg − MhCϕ

)
f (z) = f (ϕ(z))(g(ϕ(z)) − h(z)).

Thus

‖Nϕ,g,h f ‖q
Aq

α
=

∫
D

|(g ◦ ϕ − h)(z)|q | f (ϕ(z))|q dAα(z)

= ∥∥(g ◦ ϕ − h)Cϕ( f )
∥∥q
Aq

α
.

Hence, by Theorem 3.3, we have (i) and (ii). ��
We can now state and prove the main result of this section.

Theorem 5.3 Let 1 < p, q < ∞, g ∈ H(D),−1 < α < ∞, and γ = α+2
q − 1

p . Then the
following three assertions hold:

(i) If p < q and γ > 0, then Mg : Hp → Aq
α compactly intertwines all composition

operators Cϕ which are bounded both on Hp and Aq
α if and only if g ∈ B1+γ

0 .
(ii) If p < q and γ = 0, then Mg : Hp → Aq

α compactly intertwines all composition
operators Cϕ which are bounded both on Hp and Aq

α if and only if g is a complex scalar.
(iii) If p = q = 2, then Mg : H2 → A2

α compactly intertwines all composition operators Cϕ

which are bounded both on H2 and A2
α if and only if g ∈ VMOA1+(α+1)/2

2 .

Proof Theproof of (i) is similar to the proof ofTheorem3.2.Nextwe consider (ii). Sufficiency
is obvious, and we just prove the necessity. Putting ϕ(z) = eiθ z for θ ∈ [0, 2π], by Corollary
5.2 (ii), we obtain

0 = lim|a|→1
IIp,q

ϕ,α (g ◦ ϕ − g) (a)

= lim|a|→1

∫
D

(
1 − |a|2

|1 − āeiθ z|2
)q/p ∣∣∣g(eiθ z) − g(z)

∣∣∣q
(1 − |z|2)α dA(z)

= lim|a|→1
IIp,q

id,α (g ◦ ϕ − g) (a)

≈ lim|a|→1

∣∣∣g(eiθ a) − g(a)

∣∣∣ (1 − |a|2)0

where the last approximation follows from the proof of Corollary 5.1. Then the uniqueness
theorem and 0 ≈ lim|a|→1

∣∣g (
eiθ a

) − g(a)
∣∣ give that g ≡ constant.

Finally, we prove (iii). If g ∈ VMOA1+(α+1)/2
2 , we can see Mg is compact from H2 to

A2
α by Lemma 2.3 (vi). Hence

Cϕ

∣∣A2
α

Mg
∣∣H2→A2

α
− Mg

∣∣H2→A2
α

Cϕ

∣∣H2
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is compact for every Cϕ bounded on Hp and A2
α .

Conversely, by (iii) of Lemma 2.3, Mg is bounded from H2 to A2
α if and only if g ∈

BMOA1+(α+1)/2
2 . Putting ϕ(z) = eiθ z for θ ∈ [0, 2π ], by Corollary 5.2 (ii), we have

0 = lim|a|→1
II2,2ϕ,α (g ◦ ϕ − g) (a)

= lim|a|→1

∫
D

1 − |a|2
|1 − āeiθ z|2

∣∣∣g(eiθ z) − g(z)
∣∣∣2 (1 − |z|2)α dA(z)

= lim|a|→1

∫
D

(1 − |ψa(z)|2)
∣∣∣g(eiθ z) − g(z)

∣∣∣2 (1 − |z|2)α−1 dA(z)

= lim|a|→1

∫
D

(1 − |ψa(z)|2)
∣∣∣eiθ g′ (eiθ z

)
− g′(z)

∣∣∣2 (1 − |z|2)α+1 dA(z), (5.1)

where the last identity follows from Theorem 3.3 (2) of [39] (using n = 0, 1, p = 2,
q = α + 1, and s = 1). To use the dominated convergence theorem below, we first need to
obtain an upper bound for (5.1) as follows

∫
D

(1 − |ψa(z)|2)
∣∣∣eiθ g′ (eiθ z

)
− g′(z)

∣∣∣2 (1 − |z|2)α+1 dA(z)

≤
∫
D

(
1 − |ψa(eiθ z)|2

) ∣∣∣g′ (eiθ z
)∣∣∣2 (1 − |z|2)α+1 dA(z)

+
∫
D

(
1 − |ψa(z)|2) ∣∣g′(z)

∣∣2 (1 − |z|2)α+1 dA(z)

≤ 2‖g‖BMOA1+(α+1)/2
2

< ∞,

where the last line follows from (2.1). Hence, (5.1) has an upper bound independent of θ .
We also write g(z) = ∑∞

n=0 anzn , and integrate the right-hand side of (5.1) with respect
to θ from 0 to 2π as follows

0 =
∫ 2π

0
lim|a|→1

∫
D

(1 − |ψa(z)|2)
∣∣∣eiθ g′ (eiθ z

)
− g′(z)

∣∣∣2 (1 − |z|2)α+1 dA(z)dθ

= lim|a|→1

∫ 2π

0

∫
D

(1 − |ψa(z)|2)
∣∣∣eiθ g′ (eiθ z

)
− g′(z)

∣∣∣2 (1 − |z|2)α+1 dA(z)dθ

= lim|a|→1

∫
D

(1 − |ψa(z)|2)
∫ 2π

0

∣∣∣∣∣
∞∑

n=1

nanzn−1 (
einθ − 1

)∣∣∣∣∣
2

dθ(1 − |z|2)α+1 dA(z)

≥ lim|a|→1

∫
D

(1 − |ψa(z)|2)
∣∣∣∣∣

∞∑
n=1

nanzn−1
∫ 2π

0

(
einθ − 1

)
dθ

∣∣∣∣∣
2

(1 − |z|2)α+1 dA(z)

≈ lim|a|→1

∫
D

(1 − |ψa(z)|2) ∣∣g′(z)
∣∣2 (1 − |z|2)α+1 dA(z),

where the dominated convergence theorem and Fubini’s theorem are applied to the second
and third lines, respectively. Thus, by (2.2), we obtain g ∈ VMOA1+(α+1)/2

2 . ��

Remark 5.4 From our proof, we observe that composition operators, especially the rotation
composition operators, play a crucial role in the study of inner derivations, and we expect
that they will be useful for their further study.
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