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Abstract:       

Investments in direct real estate are inherently difficult to segment compared to other asset 

classes due to the complex and heterogeneous nature of the asset. The most common 

segmentation in real estate investment analysis relies on property sector and geographical 

region. In this paper, we compare the predictive power of existing industry classifications with a 

new type of segmentation using cluster analysis on a number of relevant property attributes 

including the equivalent yield and size of the property as well as information on lease terms, 

number of tenants and tenant concentration. The new segments are shown to be distinct and 

relatively stable over time. In a second stage of the analysis, we test whether the newly 

generated segments are able to better predict the resulting financial performance of the assets 

than the old dichotomous segments. Applying both discriminant and neural network analysis we 

find mixed evidence for this hypothesis. Overall, we conclude from our analysis that each of the 

two approaches to segmenting the market has its strengths and weaknesses so that both might 

be applied gainfully in real estate investment analysis and fund management.  

Keywords: market segmentation, commercial real estate, financial performance measurement, 

cluster analysis, neural network analysis, risk diversification  

JEL Classifications: C45, D4, G11, R33  
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Introduction 

 

A fundamental difficulty facing investors in direct real estate is that there are no obvious a 

priori groupings or segments characterizing these markedly decentralized and heterogeneous 

markets.  While these are readily available in other asset classes, for example groupings by 

industry and market capitalization in the stock market. This is particularly relevant for large 

institutional-type investors who seek to reap diversification benefits of their investments.  A 

major prerequisite for achieving such diversification benefits is, of course, that the segments 

used in optimizing a portfolio are maximally homogenous within themselves and maximally 

heterogeneous across groups.  A pragmatic approach used by a large number of companies 

providing real estate market intelligence across the world involves a division along the lines 

of property type (sector) and region.   

 

While this approach provides a powerful classification grid for analyzing basic characteristics 

of a portfolio and categorizing new investment opportunities, its capability of predicting the 

performance and risk characteristics of direct investments is at the very least questionable.  

The practical implication of this that investment based solely on the sector-region dichotomy 

may result in portfolios that cannot be optimally diversified even when applying advanced 

optimization techniques.  Therefore, this paper sets out to first test the predictive power of 

existing real estate market segmentations to detect whether these basic measures are 

sufficiently accurate. Next, we apply a two-step cluster algorithm to generate new market 

partitions based on additional investment characteristics and information relating to the 

tenant base and lease structure of a property.  To this aim, we analyze the comprehensive 

IPD commercial real estate database for the UK over the period 1980-2006.  Finally, we 

apply both discriminant analysis and a non-parametric neural network estimation to test the 

ability of the existing sector-region and the cluster-based segmentations to predict total rates 

of return.   

 

Previous studies 

The problem of segmenting the real estate market effectively has been studied in a number 

of contexts ranging from portfolio analysis to marketing and forecasting.  Similar to the 
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present paper, many of these studies start with an investigation of the relative importance of 

property type and/or region in explaining individual investment performance.  One of the 

earliest studies of this topic was conducted by Eichholtz et al (1995) who found for the US 

market that diversification by region was more important for retail while sector turned out to 

be more important for office properties. For the UK market, sector was found to be more 

important for retail while a combined diversification across both sector and region yielded 

the best results for office and industrial property.  Hoesli et al (1997) also conclude from 

their UK study that sector generally dominates region. Fisher and Liang (2000) found in 

their regression analysis of the US market that sector is generally more important than region 

in explaining quarterly returns.  Lee (2001) concluded from his empirical analysis of the UK 

market that sector effects were more than twice as large as region effects.  In a time-series 

analysis of these effects, Lee and Devaney (2007) generally confirm the dominance of sector 

over region found in the majority of previous studies but find that regional effects become 

almost as important as important as sectoral effects during periods of relative market calm 

and stability. McGreal, Adair and Webb (2009) find in a comparative study of UK and US 

investments that high risk portfolios are typically 100% invested in the UK and non-office 

investments. The authors also confirm the relevance of a risk dimension that measures to 

what extent the investment is income versus capital appreciation driven.  

 

 

 

Fuerst and Marcato (2009) conclude from their time-series analysis of investment styles in 

the UK that multi-dimensional style analysis yields superior results compared to the 

commonly used two-factor analysis, and that the additional styles are able to explain both 

alpha performance (and the likelihood of achieving it) and systematic risk of real estate 

portfolios. 

 

Beyond the analysis of the common sector-region dichotomy, relatively few studies have 

attempted to conceive alternative methods of classifying properties and test their predictive 

power.  After demonstrating that neither sector nor regional classifications provide a clear 

demarcation of individual property performance, Devaney and Lizieri (2005) proceed to 

generate new segments based on cluster analysis of IPD property return data.  Their results 
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show that property size and level of capitalization rate (i.e. the equivalent yield) appear to 

add some explanatory power but the authors conclude that there are no obvious factors that 

offer superior explanations.   

 

Blundell et al (2005) propose a different approach based on decomposition of volatility-

inducing factors.  These factors are categorized into four ‘fundamental’ causes of volatility 

and a larger number of ‘modulators’ that mitigate or exacerbate the variance emanating from 

the fundamentals.  The authors present a tool for visualizing the multi-facetted nature of real 

estate risk using a radar diagram dubbed the Blundell Risk Web by UK property fund 

managers who frequently use this tool for their operations. Because of its 

comprehensiveness and clarity we adopt a similar approach for visualizing the characteristics 

of clusters found in this study.   

 

Data 

 

The empirical study of possible market segmentations is conducted on a large dataset of 

individual properties in the Investment Property Databank (IPD).  We consider all 

commercial properties in the UK direct investment universe which were held over the ten-

year period from 1998-2007 and have a complete set of relevant characteristics and financial 

data. We split the sample into two subperiods to test for stability and obtain 2,165 properties 

for the 1998-2002 period and 3,890 for the 2003-2007 period.  

 

For each property, we obtained the following information:  

 Capital Value (CVt), representing the market value of the building at time t to capture 

any effect of property size on financial performance.  

 Total return, reflecting both the capital gain (CVt – CVt-1) and the net income achieved 

by the investor as a percentage of the capital invested (CVt-1 plus capital 

expenditures):  

 Equivalent Yield (EYt), representing a cap rate considering both the current rent paid 

by the tenant and the market rent that will be paid at the following rent review. 
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Specifically, IPD computes this metric by equating the capital value as provided by 

an independent appraiser and the future cash flow of the property, assuming that the 

current market rent is the new rent the tenant will start to pay at the next rent review 

(i.e. zero rental growth is assumed). 

 Number of tenants for each building. This variable is used to differentiate concentrated 

and diversified styles. 

 Unexpired lease term, defined as the average number of years to lease expiry. This 

variable is used to classify properties with short vs. long lease terms. 

 Tenant concentration measures the percentage of floorspace occupied by the five largest 

tenants in the asset.  

Exhibit 1 shows summary statistics for the variables used in this analysis. The sample is not 

balanced over time, i.e. a number of properties entered or left the database over the ten year 

period.  The resulting heterogeneous structure of the sample over time complicates the 

comparability of the summary statistics over time as it is not quality-adjusted.  However, this 

limitation can be considered relatively minor compared to the serious survivorship bias that 

would be introduced by including only those properties that were held throughout the entire 

ten-year period.  

 

Exhibit 1: Summary Statistics 

  Sample Valid obs. ø Median Std. Dev. 

Total return 1998-2007 12,393 10.19 5.97 

 1998-2002 12,950 9.25 1.76 

 2003-2007 11,836 11.13 8.66 

ECV growth  1998-2007 12,394 3.21 5.60 

 1998-2002 12,950 1.66 1.63 

 2003-2007 11,839 4.76 7.87 

Equivalent yield 1998-2007 10,968 7.35 0.92 

 1998-2002 11,460 8.08 0.13 

 2003-2007 10,476 6.61 0.74 

Capital value 1998-2007 16,830 2,807,500 2,270,670 

 1998-2002 20,870 1,004,000 558,328 

 2003-2007 12,789 4,611,000 1,776,965 

Unexpired lease term 1998-2007 9,569 9.13 1.95 

 1998-2002 9,293 10.80 1.10 
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 2003-2007 9,982 7.46 0.64 

No. of tenants 1998-2007 9,634 2.30 0.48 

 1998-2002 9,355 2.00 0.00 

 2003-2007 10,054 2.60 0.55 

Tenant concentration in %  1998-2007 9,481 91.57 1.47 

 1998-2002 9,172 92.76 1.09 

 2003-2007 9,943 90.38 0.34 

ERV growth 1998-2007 9682.1 0.96 1.37 

 
1998-2002 10,226 1.83 1.52 

 
2003-2007 9,138 0.09 0.12 

 

 Analytical approach 

In order to generate new multi-dimensional clusters, we apply a scalable two-step cluster 

algorithm.  The main advantages of this type of cluster analysis are that it can handle both 

continuous and categorical variables or attributes and that it is designed to handle large 

datasets without creating excessive computational loads. The steps are: 1) pre-cluster the 

cases into a large number of sub-clusters; 2) cluster the sub-clusters resulting into the desired 

number of clusters. The procedure is implemented by constructing a modified cluster feature 

(CF) tree.  For the sake of comparability, the number of clusters was preset to 10 and 13 

respectively to match the number of clusters used in the existing industry classifications.  We 

also apply outlier handling by classifying any leaf entry as an outlier if the number of records 

in the entry is less than 25% of the size of the largest leaf entry in the CF tree.  In terms of 

distance measure, we apply log-likelihood distance rather than the more common Euclidian 

distance as the former is capable of handling both continuous and categorical variables in 

our dataset.  The basic principle behind it is the distance between two clusters is related to 

the decrease in log-likelihood as they are combined into a single cluster.  Thus, the distance 

between two clusters i and j is defined as:  
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In the second step, we test the clusters using discriminant analysis. The main purpose of this 

is to build a predictive model for cluster group membership. The model is composed of a set 

of discriminant functions based on linear combinations of the predictor variables that yield 

the best ‘discrimination’ between the groups.   

We complement this standard technique with a more recent non-parametric approach, i.e. 

neural network analysis. According to Haykin (1998), a neural network is a parallel 

distributed processor that has a natural propensity for storing experiential knowledge and 

putting it to use for prediction.  In doing so it emulates human brain activity by going 

through an iterative learning process and storing the acquired knowledge as synaptic weights. 

Its advantages are that it is highly adaptive and more flexible than the rather rigid linear 

parametric methods.  This is particularly true in cases where a large number of previous 

observations exist to ‘train’ the network and if the task involves recognition of groups or 

patterns in the data.  As both of these criteria apply to our study it appears reasonable to use 

neural network analysis for additional tests of various real estate market segments.  

 

Empirical Results 

The two-step cluster procedure was initially applied to two subperiods with a preset number 

of 10 and 13 clusters respectively to ensure comparability with two segmentations commonly 

used in the property industry.  Exhibit 2 shows the distribution of property types obtained 

for the set of 10 clusters in the period 2003-2007 (note: columns add up to 100%). A further 

inspection of cluster characteristics (Exhibit 3) reveals that the common criteria within these 

clusters involve both financial and spatial characteristics.  The clusters show distinct profiles 

of properties for a number of characteristics. For example, properties in Cluster 3 are 

predominantly retail and concentrated in the Greater London area with very high capital 

values and a large number of tenants and a high degree of tenant diversification. As 
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expected, a cross-tabulation with the more detailed L&G property classification reveals that 

Cluster 3 contains mainly shopping centres (Exhibit A in the appendix).   

 

Exhibit 2: Cluster distribution 

Cluster Retail Office Industrial Other 

1 8.5% 7.9% 25.8% 10.6% 

2 0.1% 12.1% 22.1% 6.3% 

3 2.9% 0.4% 0.5% 4.7% 

4 11.8% 32.2% 1.0% 19.9% 

5 3.0% 2.2% 1.8% 44.2% 

6 .0% 27.8% 16.6% 2.7% 

7 21.8% 3.7% 8.6% 55.6% 

8 27.8% 0.2% 0.0% 29.2% 

9 9.8% 6.0% 11.6% 7.1% 

10 14.0% 7.1% 11.9% 20.0% 

     

N 2051 1115 1468 1.2% 

 

A sectoral and regional dimension of the clusters is also confirmed by the maps in the 

appendix which show random examples of clusters.  To visualize the additional dimensions 

captured by the new segments we complement the maps with a radar diagram which shows 

for each cluster the relative value for each dimension (100 is the overall sample average in 

each case). 

Exhibit 3: Description of 10 clusters  

 
 

No. Regional Focus Sectoral Focus 
Eq. 

Yield 
Capital 
Value 

Lease 
Terms 

No. of 
Tenants 

Tenant 
Conc’tion 

1 Diversified Ind (58%), Ret (27%) 7.4 18,739,686 6.1 21.1 54.9 

2 Reg 7,8 (70%) Ind (69%), Off (29%) 8.1 5,347,953 6.3 4.3 95.4 
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3 Reg 4,5 (49%) Ret (81%) 6.6 136,680,012 9.9 120.5 25.9 

4 Reg 3 (44%) Off (57%), Ret (38%) 6.2 13,467,075 8.0 4.9 94.5 

5 Diversified Ret, diversified (44%) 5.8 7,693,453 59.1 2.6 98.0 

6 Reg 6 (99%) Off (56%), Ind (44%) 7.3 8,886,067 7.0 3.4 97.2 

7 Reg 7,9,11 (98%) Ret (68%), Ind(19%) 6.3 8,543,710 10.9 3.2 97.9 

8 Reg 6,8 (79%) Ret (96%) 5.9 9,298,069 10.8 3.0 98.2 

9 Reg 5 (97%) Ret (45%), Ind (38%) 6.4 10,603,821 9.1 3.5 96.9 

10 Reg 10,12 (100%) Ret (52%), Ind (31%) 6.7 8,907,715 9.7 3.1 97.8 

A crucial test to pass for any new set of market segments is whether they are sufficiently 

stable over time so that group membership remains the same for the majority of properties 

in a portfolio throughout the holding period. If each period yielded a completely new set of 

segments, this would render the classification useless for forward-looking investment and 

management strategies. As Exhibit B in the appendix demonstrates, the clusters obtained for 

the period 1998-2002 and for 2003-2007are fairly stable with 8 out of 10 clusters retaining 

70% or more of the properties assigned to them in the earlier period. No cluster contains 

less than 50% of its members from the previous period.  This stability is quite astonishing, 

particularly when considering that sample size has nearly doubled in the second subperiod.  

In the next step, we test the predictive performance of each cluster with a discriminant 

analysis. If the principal goal of segmentation is to derive groups that differ significantly in 

their financial performance (total return, capital & ERV growth) it should be possible to 

predict the groupings –PAS segments or new clusters- by using these financial variables 

although they were not used in the formation of either of these segmentations. The results 

of the discriminant analysis for the 10 cluster set are reported in Exhibit 4.  Overall, only 

about 25% of properties were classified in the ‘correct’ cluster based on their financial 

performance. For individual clusters the correct prediction rates range from 5% to  53%. 

Although the group means of total returns are distinct (see Exhibit D in appendix), the 

prediction rate is relatively low. A discriminant analysis of PAS segment prediction using the 

same financial predictors shows a slightly better predictor rate of 34%. Based on these 

results, it appears that the new clusters do not perform better than PAS segments in forming 

groups with homogeneous financial performance.  
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Finally, we use neural network analysis to see whether an alternative non-parametric method 

confirms or contradicts the results obtained from the discriminant analysis. In this model 

specification, both PAS and cluster segmentations are used to predict the average total return 

of an asset in the period 1998-2007. Exhibit E in the appendix demonstrates that the error 

sum of squares is lower for the cluster set than for the PAS segments. This indicates that the 

long-term predictive power of newly created clusters which take advantage of a broader set 

of asset characteristics is superior over the two-dimensional PAS segments.  Even when 

broken down to individual years, the multi-dimensional clusters clearly outperform the 

sector-region PAS classification in terms of their predictive power. While the findings of the 

neural network analysis are surprising in light of the results of the discriminant analysis, there 

are a number of methodological reasons that could account for this difference. Apart from 

the obvious differences in the setup of the models (the neural network only used total 

returns, discriminant used total return, ERV growth and capital growth) one possible 

explanation is that the neural network method is more flexible than discriminant analysis and 

is therefore better able to predict financial performance based on the nuances of the multi-

dimensional clusters.  

A sequential analysis of individual factors shows that ERV growth, yield, property size, 

tenant diversification, lease terms and volatility measures all add predictive power to the new 

segments.  While each new cluster exhibits a particular emphasis on a specific region and/or 

property sector, the clusters also incorporate properties in seemingly unrelated regions and 

sectors whose financial characteristics were similar in the observed period.  These common 

characteristics provide vital clues to fund managers and investors regarding potential 

diversification benefits.   

Exhibit 4: Discriminant analysis. 

Clusters 1 2 3 4 5 6 7 8 9 10 

1 7.8 11.0 10.6 7.8 4.9 17.2 7.7 10.5 11.7 10.6 

2 3.7 29.5 3.7 8.8 3.5 30.9 4.6 2.1 5.8 6.9 

3 5.0 .0 35.0 10.0 8.3 3.3 5.0 11.7 6.7 15.0 

4 1.3 5.2 6.8 45.8 9.6 9.9 1.1 7.5 7.3 5.0 

5 .8 4.6 14.5 17.6 21.4 4.6 3.1 12.2 15.3 4.6 
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6 2.1 19.2 3.1 5.7 2.7 53.3 1.1 1.3 4.2 6.9 

7 2.4 9.3 11.4 5.7 3.9 11.1 5.1 28.1 7.1 15.8 

8 2.2 3.1 10.4 6.2 6.7 5.4 5.0 37.4 10.0 13.5 

9 5.3 8.6 10.0 9.1 7.7 15.8 3.3 22.2 12.4 5.0 

10 2.8 13.2 12.5 4.5 4.0 16.2 6.0 17.2 4.7 18.9 

Total 7.8 11.0 10.6 7.8 4.9 17.2 7.7 10.5 11.7 10.6 

  Valid N = 5049 

 
This table represents the correspondence between original and predicted clusters. Original clusters 

are in columns, and clusters predicted by discriminant analysis in rows. 

Conclusions 

This study set out to test whether a dichotomous classification of properties by sector and 

region is sufficient for a top-down approach to portfolio management and selection of 

investment properties.  To this aim, we compare the predictive power of two existing 

industry classifications to the segments derived from a cluster analysis.  The variables used to 

generate the new clusters included the equivalent yield, total capital value as well as 

information on lease terms, number of tenants and tenant concentration. The clustering 

algorithm generates groups of assets that are distinct with regard to their spatial and sectoral 

distribution, tenant and lease attributes and as well as average size of the assets. A test 

performed on the preceding five-year period shows that the obtained clusters are fairly 

robust and persist over time even as a large number of assets entered or left the database 

throughout the study period.  

While the results of a discriminant analysis do not show that the new clusters are superior to 

PAS segments in predicting financial performance, the application of a neural network 

technique suggests that using the cluster groups drastically reduces the sum of errors in a 

prediction of total returns.   

A clear disadvantage of the cluster groupings is that their profiles are more difficult to grasp 

than the segments based on the simple two-dimensional approach.  Since both types of 

approaches have their own fundamental strengths and weaknesses, parallel usage of both 

classification methods appears to be the most promising approach.  The new segments 
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based on cluster analysis may be more suitable for identifying investment opportunities and 

identifying potential risks using a number of relevant attributes whereas the existing 

dichotomous classifications are superior when it comes to describing the fundamental 

characteristics of a portfolio in terms of its regional and sectoral split.  
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Exhibit A: Description of 10 clusters against L&G segmentation 
 

 
 Cluster Number 

Total 
  1 2 3 4 5 6 7 8 9 10 

 

Distribution Warehouse 3 24 0 2 3 26 33 0 23 35 149 

Leisure-Other 4 2 0 2 1 0 22 12 7 6 56 

Office Park 17 32 0 9 0 66 4 0 7 24 160 

Other 3 5 2 17 26 3 21 11 1 10 99 

Retail Park 62 0 2 15 0 0 85 115 31 49 359 

Shopping Centre 53 0 57 1 1 0 2 3 3 3 123 

Solus Unit 1 0 0 7 0 0 39 68 33 44 192 

Std Industrial Rest UK 187 200 2 11 7 0 92 0 0 140 639 

Std Industrial SE 189 101 5 1 17 218 1 0 148 0 680 

Std Office Central London 5 1 5 143 9 0 0 0 0 0 164 

Std Office Rest SE 27 54 0 4 8 244 0 1 60 0 399 

Std Office Rest UK 36 45 0 35 1 0 37 1 0 55 211 

Std Office West End 3 3 0 168 6 0 0 0 0 0 181 

Std Retail 58 3 1 220 61 0 321 385 135 192 1377 

Total 648 470 74 635 140 557 657 596 448 558 4789 
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Exhibit B: Correspondence table of cluster memberships 2003-2007 (columns) by 1998-2002 (rows) 

 

Clusters 1 2 3 4 5 6 7 8 9 10 

1 0% 0% 7% 0% 94% 0% 3% 1% 2% 1% 

2 1% 1% 0% 70% 4% 0% 0% 0% 2% 0% 

3 77% 9% 0% 8% 0% 6% 1% 1% 4% 5% 

4 0% 0% 0% 0% 0% 0% 23% 29% 0% 0% 

5 2% 83% 0% 0% 0% 0% 18% 0% 1% 6% 

6 0% 2% 0% 0% 0% 0% 55% 17% 0% 0% 

7 1% 4% 0% 21% 2% 0% 1% 0% 0% 88% 

8 1% 0% 0% 0% 0% 94% 0% 53% 3% 0% 

9 1% 0% 0% 0% 0% 0% 0% 0% 88% 0% 

10 17% 1% 93% 0% 0% 0% 0% 0% 0% 0% 

Total 0% 0% 7% 0% 94% 0% 3% 1% 2% 1% 

Pearson Chi-Square  3383.645 (Asympt. Sig. 0.000),   Likelihood Ratio 2145.08 (Asympt. Sig. 0.000),   Valid N = 1059 
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Exhibit C: Examples of spatial distributions of clusters 
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Exhibit D: Results of discriminant analysis  

 

Panel A: Test Results: BOX’s M  

 New clusters PAS segments 

Box's M 11061 3715 

F Approx. 18.238 39.933 

df1 594 910 

df2 646413 1433568 

Sig. .000 .000 

Null hypothesis: equal population covariance matrix 

 

 

Panel B Tests of Equality of Group Means  

 Wilks' Lambda F df1 df2 Sig. 

tr2003 .875 55.658 10 3879 .000 

tr2004 .948 21.210 10 3879 .000 

tr2005 .961 15.848 10 3879 .000 

tr2006 .940 24.907 10 3879 .000 

tr2007 .906 40.076 10 3879 .000 

ervg2003 .947 21.658 10 3879 .000 

ervg2004 .967 13.199 10 3879 .000 

ervg2005 .978 8.632 10 3879 .000 

ervg2006 .941 24.179 10 3879 .000 

ervg2007 .934 27.250 10 3879 .000 

ecvg2003 .849 69.037 10 3879 .000 

ecvg2004 .924 31.813 10 3879 .000 

ecvg2006 .937 26.129 10 3879 .000 

ecvg2007 .894 46.193 10 3879 .000 
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Panel C: Canonical Discriminant Functions 
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Exhibit E: Neural Network Analysis 

 

Panel A: Network Diagrams of cluster prediction (left) and PAS segment prediction (right) 

 

 

Panel B: Model Summary  

  New clusters PAS segments 
    

Training Sum of Squares Error 1405.222 7483.361 

Relative Error .995 .999 

Stopping Rule Used 1 consecutive step(s) with no 

decrease in errora 

1 consecutive step(s) with no 

decrease in errora 

Training Time 00:00:01.263 00:00:01.575 

Testing Sum of Squares Error 280.443 2379.423 

Relative Error .965 1.004 

Dependent Variable: tr_98_07  

a. Error computations are based on the testing sample.  

 

 




