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Abstract

Recent work has shown that both the amplitude of upper-level Rossby waves and the tropopause

sharpness decrease with forecast lead time for several days in some operational weather forecast

systems. In this contribution, the evolution of error growth in a case study of this forecast

error type is diagnosed through analysis of operational forecasts and hindcast simulations.

Potential vorticity (PV) on the 320-K isentropic surface is used to diagnose Rossby waves. The

Rossby-wave forecast error in the operational ECMWF high-resolution forecast is shown to

be associated with errors in the forecast of a warm conveyor belt (WCB) through trajectory

analysis and an error metric for WCB outflows. The WCB forecast error is characterised by

an overestimation of WCB amplitude, a location of the WCB outflow regions that is too far to

the southeast, and a resulting underestimation of the magnitude of the negative PV anomaly

in the outflow. Essentially the same forecast error development also occurred in all members of

the ECMWF Ensemble Prediction System and the Met Office MOGREPS-15 suggesting that

in this case model error made an important contribution to the development of forecast error in

addition to initial condition error. Exploiting this forecast error robustness, a comparison was

performed between the realised flow evolution, proxied by a sequence of short-range simulations,

and a contemporaneous forecast. Both the proxy to the realised flow and the contemporaneous

forecast a were produced with the Met Office Unified Model enhanced with tracers of diabatic

processes modifying potential temperature and PV. Clear differences were found in the way

potential temperature and PV are modified in the WCB between proxy and forecast. These

results demonstrate that differences in potential temperature and PV modification in the WCB

can be responsible for forecast errors in Rossby waves.
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1 Introduction

Despite remarkable advances in resolution and formulation in recent years, facilitated by en-

hanced computer power, global numerical weather prediction and climate models still rely on

parameterisations of diabatic processes and will continue to do so for the foreseeable future.

These parameterisations introduce inaccuracies into models and contribute to the occurrence

of systematic forecast error. The reduction of systematic errors has multiple potential benefits.

These include (i) extended accurate lead times for numerical weather prediction forecasts, (ii)

improved lateral boundary conditions for high-resolution domains nested within global mod-

els, and (iii) improved statistical properties of climate integrations. In this paper we demon-

strate one route to systematic forecast error. We associate, in a case study, forecast error in

the tropopause-level Rossby-wave development to the forecast error in a warm conveyor belt

(WCB). The error in the WCB is shown to arise from errors in the modification of potential

temperature (θ) and potential vorticity (PV) as air ascends along it.

Many previously published studies describe research aimed at understanding and reduc-

ing systematic error. Jung (2005) documents the systematic errors in European Centre for

Medium-Range Weather Forecasts (ECMWF) model simulations of the winter atmospheric cir-

culation, describing how they evolve out to a month time range and how they have changed

with model developments over the previous two decades. In the extratropics one focus of at-

tention has been on the representation of the stratosphere (see review article by Tripathi et al.,

2015). In the tropics attention has focused on aspects including the representation of the

Madden-Julian Oscillation (e.g, Holloway et al., 2013; Kim et al., 2009; Jung et al., 2005) and

the sources of climatic sea surface temperature biases (Vannière et al., 2014) and their impact

on El Nino Southern Oscillation predictability and variation (Manganello and Huang, 2009).

Each of these efforts quantifies model error development at short timescales and determines

how this error then limits prediction on monthly to seasonal timescales. These errors ulti-

mately result in biases in climate models. Phillips et al. (2004) describe a parameterisation

testbed initiative designed to support the running of climate models in numerical weather pre-

diction configuration to diagnose deficiencies in parameterisations. More recently, Ma et al.

(2014) demonstrate that most systematic errors in precipitation, clouds, and radiation pro-

cesses in long-term climate runs from the fifth phase of the Coupled Model Intercomparison

Project (CMIP5) are present by day five in ensemble average hindcasts in all models, and that

these errors typically saturate after few days of hindcasts with amplitudes comparable to the

climate errors. Rodwell and Palmer (2007) propose using this approach to assess the likelihood

of climate predictions derived from perturbed model experiments as a computationally cheaper

alternative to assessing the skill of each experiment in reproducing the present-day climate.

The use of numerical weather prediction to diagnose sources of errors in climate models is en-

abled by the capability to run climate models in numerical weather prediction configuration.

This capability is implicit in models that use a seamless approach to modelling the weather

and climate timescales, and consequently has been used to analyse systematic forecast errors

in the Met Office Unified Model (Martin et al., 2010).
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In general, forecast error increases with forecast lead time although forecasts can degrade

substantially at critical points in their evolutions (Langland et al., 2002). There are occasions

when the forecast is particularly poor, known as forecast busts. In many cases, forecast busts

are not simply ‘bad luck’, but associated with particular flow regimes that are both highly

sensitive to small perturbations and associated with conditions that are poorly represented by

the forecast model. As an example, a common type of European forecast bust has been linked

to a particular large-scale flow regime occurring six days prior to the forecast bust episode

by Rodwell et al. (2013). This precursor large-scale flow regime is characterised by a trough

over the Rocky Mountains together with poor representation of strong organised thunderstorm

activity over the US Great Plains. Although a clear precursor for European forecast busts

is described by Rodwell et al. (2013), a complete account of the dynamical link between the

precursor and forecast bust is not given. By mechanistically linking such forecast busts to

the precursor flow regime, it should be possible to identify specific aspects of the model where

improvement would yield maximum benefit.

Sources of systematic forecast error include inconsistencies in the dynamical core, insuffi-

cient resolution and errors due to the parameterisations of diabatic processes. As an example

of dynamical core error, Whitehead et al. (2014) demonstrate inconsistency between model dy-

namical cores and tracer advection schemes in idealised breaking baroclinic wave simulations.

Tracer advection schemes are required to passively advect the many tracers required in mod-

els, particularly chemical tracers in climate models, and hence such inconsistencies can lead to

systematic errors. As an example of resolution errors, Holloway et al. (2013) considered the

representation of the Madden-Julian oscillation in simulations with grid spacings of 40, 12 and

4 km. The best representation of the Madden-Julian oscillation was found with the highest

resolution simulation, but this was found to depend critically on the representation of the con-

vection and the boundary layer in the model. In contrast, considering coarser resolutions (of

about 210 km and 40 km), Berner et al. (2012) found increased horizontal resolution had little

impact in the tropics whereas improving the deterministic parameterisations and introducing

stochastic parameterisations reduced several systematic errors; all three model refinements led

to a decrease in the systematic bias of the Northern Hemispheric circulation.

The focus of this paper is error arising from the misrepresentation of diabatic processes

due to the necessity to parameterise them. In a study of the Superstorm ’93 (12–14 March

1993) using the NCEP operational Medium Range Forecast Model Dickinson et al. (1997) were

able to show that the failure to reproduce the initial stages of the storm could be linked to the

model’s inability to produce sufficient deep convection due to deficiencies in the model’s convec-

tion parameterisation scheme. Using examples from the CMIP5 integrations, Stevens and Bony

(2013) argue the case for focusing efforts to improve climate models on improving the numerical

representations of how clouds, moist convection and heating couple to the general circulation.

In the extratropics cloudy air in ascending WCBs in extratropical cyclones experiences strong

diabatic heating. Diabatic cooling also occurs in the associated evaporating downdraughts

and due to long-wave cooling at cloud top or at strong humidity gradients. Madonna et al.
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(2015) introduced a three-component feature-based verification measure for WCBs and applied

it to operational medium-range forecasts from the ECMWF. While recent model versions are

shown not to systematically over- or under-represent WCB amplitude (as measured by the

amount of ascending air) or tropopause-level negative PV anomalies, individual forecasts are

found to be associated with large errors particularly in the amplitude of WCBs. Notice that

this lack of systematic error does not imply that diabatic processes are perfectly represented

in current versions of the ECMWF model. WCBs are the result of processes over periods

of at least two days. During these periods, complex interactions between diabatic processes

and dynamics take place. These complex interactions are not yet fully understood (e.g. the

relationship between cyclone strength and WCB strength). Under these circumstances, the

misrepresentation of either component (diabatic processes or dynamics) in a model could in

one case lead to an overestimation and in another case to an underestimation of the WCB am-

plitude. Chagnon et al. (2013) and Chagnon and Gray (2015) partition the modification of PV

in WCBs into different parameterised model processes and demonstrate how these processes

can enhance the PV gradient across the tropopause. This enhanced PV gradient modifies the

phase speed of planetary Rossby waves propagating on the tropopause; the westwards propa-

gation of the Rossby waves counter to the eastwards jet is enhanced, but the local jet speed

is also enhanced such that the overall effect on the phase speed cannot easily be inferred.

Errors in Rossby-wave propagation and structure propagate downstream leading to errors in

the genesis and development of cyclones and anticyclones (Davis, 1992). Gray et al. (2014)

diagnosed systematic errors in the Rossby waves in operational medium-range winter-season

Northern-hemisphere forecasts. Tropopause sharpness adjacent to ridges and ridge amplitude

systematically decreased out to about five-day lead time. A strong effect of model resolution

was diagnosed but the authors concluded that more work is necessary to isolate the contribution

of diabatic processes. Davies and Didone (2013) used a PV perspective to identify five mech-

anisms that can cause forecast errors by generating or enhancing Rossby waves. Two of these

mechanisms, lower-stratospheric PV anomalies and anomalously-low values of tropospheric PV

beneath the tropopause due to deep convection, directly relate to diabatic processes.

The aim of this study is to produce a detailed anatomy of one type of forecast error,

that associated with WCBs. This is achieved through analysis of a specific case study that

demonstrated large forecast error in the development of a tropopause-level ridge at lead times

exceeding three days. The consistency between the error characteristics in this case and those

found to occur systematically in medium-range operational forecasts by Gray et al. (2014)

suggest that this route to forecast error could also be systematic.

The structure of the remainder of this paper is as follows. The models and diagnostics used

are described in Section 2. The diagnostics used in this paper are the feature-based verification

measure for WCBs introduced by Madonna et al. (2015) (which includes trajectory analysis) to

characterise the forecast error in the WCB, and on-line θ and PV tracers to assess the diabatic

modification of these variables by the WCB. The case study is introduced in Section 3. The link

between tropopause-level ridge error and error in the WCB that outflows into the ridge is made
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using output from operational forecasts and the error is shown to be reproducible in different

forecast systems. The role of diabatic processes in the error development is investigated in

Section 4. A summary and conclusions are presented in Section 5.

2 Data, tools and methodology

In this Section, we describe the models and methods used in this work. The output from the

operational ECMWF high-resolution model (analyses and forecast) is used to compute WCB

trajectories. The feature-based method of Madonna et al. (2015) is applied to this dataset,

as described in Section 2.1. The operational ensemble forecast data from the ECMWF and

the Met Office are also examined to investigate the representation of the case study in these

ensemble prediction systems, as described in Section 2.2. Finally the Met Office Unified Model

(MetUM) is used to produce hindcasts of the case study, including diabatic tracers, as described

in Section 2.3.

2.1 Trajectory analysis and PAL

WCB trajectories are calculated from a 6-hourly output from the ECMWF operational analyses

and the ECMWF high-resolution forecast initialised at 1200 UTC 19 January 2011. First the

data is interpolated in the horizontal from the original grid (T1279) to a regular grid with 1◦

grid spacing, where the vertical levels (L91) remain unchanged. Using the Lagrangian Analysis

Tool LAGRANTO (Wernli and Davies, 1997) trajectories that experience a rapid ascent (more

than 600 hPa in 48 hours) are selected. To be identified as WCBs, the trajectories have to

ascend in the vicinity of an extratropical cyclone. Moreover, a filter which removes double

counts of the same air mass is applied. More details on the calculation of WCBs can be found

in Madonna et al. (2015).

To verify WCB outflows in forecasts against those in analyses, the feature-based method

PAL (PV-anomaly–Amplitude–Location) (Madonna et al., 2015) is used. In this method, three

different aspects of the forecast of WCBs are considered, as described in detail in Madonna et al.

(2015). The first component, P, measures the error of the PV anomaly in the WCB outflow

region. PV is strongly modified within WCBs due to diabatic processes. However, air masses

in the WCB start and end their ascent to the upper troposphere with low PV values (∼

0.5 PVU) (Methven, 2015). As a result, WCBs reach the upper troposphere with low PV

values, generating a negative PV anomaly when compared to the climatological PV values.

The negative PV anomaly can be important for the subsequent upper-level flow evolution. The

P component is not normalised and can assume positive and negative values. A negative P

value means that the PV anomaly is too weak in the forecast. The second component, A,

measures the amplitude error of the WCB, since the amount of rising air is crucial for the

modification of the upper-level flow. The A term is defined as the difference in the number

of WCB trajectories normalized by the average number of WCB trajectories in the analysis

and forecast. The A component can assume values between −2 and +2 with positive values
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indicating an overestimation of the number of WCB trajectories in the forecast. Finally, the L

component is a measure of the horizontal location error of the WCB outflow. This component

consists of the error of the distance between the centre of mass of all WCBs and the error of

the averaged distance between each WCB and the overall centre of mass (for more details see

Wernli et al., 2008; Madonna et al., 2015). It can only assume positive values between 0 and

2. A value close to 2 indicates that the WCB outflows are located at the opposite edges of the

chosen domain (here the North Atlantic 15◦N–90◦N, 100◦W–10◦E).

2.2 TIGGE

THORPEX (The Observing System Research and Predictability Experiment) Interactive Grand

Global Ensemble (TIGGE) (Park et al., 2008) is an archive of ensemble forecast data from ten

operational ensemble prediction systems (EPSs), starting from October 2006. In this work, we

examine two of these EPSs, namely the 15-day forecasts from the Met Office Global and Re-

gional Ensemble Prediction System (MOGREPS-15) (Bowler et al., 2008, 2009; Tennant et al.,

2011) and the ECMWF EPS (Molteni et al., 1996; Buizza et al., 1999). Relevant features of

these two EPSs are summarised in Table 1. These aspects will be discussed in Section 3.3, once

the context of the study has been further developed.

2.3 MetUM

The Met Office Unified Model (MetUM) is an operational finite-difference numerical weather

prediction model that solves the non-hydrostatic deep-atmosphere dynamical equations with

a semi-implicit, semi-Lagrangian integration scheme (Davies et al., 2005). It uses Arakawa C

staggering in the horizontal (Arakawa and Lamb, 1977) and is terrain-following with a hybrid-

height Charney–Phillips (Charney and Phillips, 1953) vertical coordinate. Its package of physi-

cal process parameterisations includes longwave and shortwave radiation (Edwards and Slingo,

1996), boundary layer mixing (Lock et al., 2000), cloud microphysics and large-scale precipita-

tion (Wilson and Ballard, 1999), and convection (Gregory and Rowntree, 1990).

In this study, the MetUM version 7.3 has been used in its global configuration to produce

hindcasts of the case study. The model has been complemented by the inclusion of θ and PV

tracers, as detailed in Section 2.3.1. The model has been initialised using its native Met Office

operational global analyses to minimize the effects of ‘initial shocks’ (Klocke and Rodwell,

2013). The initialisation dates are detailed in Section 2.3.2. The simulations were performed

with the MetUM version 7.3 at a horizontal resolution of N512 (∼ 25 km grid spacing) and 70

vertical levels with the top of the model around 80 km. The model was run with its standard

physical parameterisation package and climatological SST.

2.3.1 Diabatic tracers

Diabatic tracers are tracers of changes in θ and PV due to diabatic processes. Potential tem-

perature tracers enable identification of the processes that bring air parcels to their current
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isentropic level through cross-isentropic motion. PV tracers enable identification of modifica-

tions to the circulation and stability and the diabatic processes responsible for such modifi-

cations. The θ tracers used have been described in Mart́ınez-Alvarado and Plant (2014) and

Mart́ınez-Alvarado et al. (2014), while the PV tracers have been described in Stoelinga (1996),

Gray (2006), Chagnon and Gray (2009) and Chagnon et al. (2013).

The idea behind both kinds of tracers consists of the separation of the variable of interest

ϕ (representing either θ or PV) into the sum of a materially conserved component, ϕ0, a

diabatically-generated component, ϕd, and a residual rϕ, i.e.

ϕ(x, t) = ϕ0(x, t) + ϕd(x, t) + rϕ(x, t), (1)

where x represents spatial location and t is time. Each part is governed by the following

equations

Dϕ0

Dt
= 0 (2)

Dϕd

Dt
= Sϕ, (3)

where Sϕ represents a source due to diabatic processes. In other words, ϕ0 is unaffected

by diabatic processes, and therefore conserved following an air parcel, while ϕd is affected

by diabatic processes. The sum of (2) and (3) yields the full evolution equation for ϕ. At

initialisation time, t0, ϕ0(x, t0) = ϕ(x, t0) and ϕd(x, t0) = 0.

Equations (2) and (3) are solved using the same numerical methods implemented in the

MetUM to solve the evolution equations of the model’s prognostic variables. However, there

are details within such numerical methods which lie far beyond the scope of this article, such

as the treatment of vertical interpolation in the advection of potential temperature, that are

only strictly valid for the prognostic variables themselves. Therefore, there is an unavoidable

mismatch between the computation of the prognostic variables and the computation of dia-

batic tracers. This mismatch is specially important in the computation of advection. Thus,

the residual term in (1) arises from the mismatch between the advection of ϕ and that of

each individual tracer (see e.g. Whitehead et al., 2014). The residual grows over time in both

cases, but at a slower rate for the θ-tracers than for PV-tracers. However, restricting the

length of the simulations to a maximum of two days also restricts the residual growth to a

maximum of ±2 K for θ and ±0.5 PVU for PV within the region of interest. Notice that,

apart from the just described issues arising from their numerical implementation, the diabatic

tracers are fully consistent with the parent model (i.e. the MetUM) in terms of the grid-scale

effects of each parameterisation scheme (including convection) and in terms of the advection

of these effects due to the grid-scale wind components. A similar discussion can be found in

Mart́ınez-Alvarado et al. (2014) regarding the related method of trajectory analysis.
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2.3.2 Sequence of hindcast simulations

Figure 1 is a graphical representation of the method used to generate a forecast proxy to the

evolution of the realised flow constrained by analyses. The analysis of forecast error requires

knowledge of the realised flow evolution and the availability of a contemporaneous forecast (e.g.

Davies and Didone, 2013). Here, the contemporaneous forecast simply consists of a five-day

hindcast starting from the analysis on 1200 UTC 19 January 2011 (segment A-F’ in Fig 1).

However, our knowledge of the realised flow evolution is restricted to the analyses at given

times (points A,B,...,F in Fig. 1). Thus, we have an approximation to the actual state of the

atmosphere at given times, but not the flow evolution joining atmospheric states from one time

to the next. To circumvent this problem, the realised flow evolution is proxied by a sequence

of short-range (up to two-day) hindcasts. A necessary assumption underlying the use of a

short-range hindcasts as a proxy to the realised flow is that such hindcasts can be trusted as

a reliable representation of the physical processes governing the atmospheric evolution. No

model is perfect and no initial conditions are free of error. As a result, forecast error starts

growing as soon as a simulation starts. For example, Zhang et al. (2003) (see also Zhang et al.,

2007) have demonstrated how forecast errors in idealised simulations of moist baroclinic waves

grow from small convective scales up to the large-scale flow in timescales of the order of 12

hours. However, the assumption of model reliability as a representation of the atmospheric

evolution is justified by noticing that forecast error is relatively small in two-day forecasts. For

example, Frame et al. (2011) showed that the forecast skill of transitions of the North Atlantic

eddy-driven jet of both the ECMWF EPS and MOGREPS-15 was very good for the first three

forecast days, but rapidly deteriorated beyond this time.

The duration of the short-range forecasts is restricted to a maximum of 48 hours so that

they are sufficiently short to remain close to the phase space orbit defined by the sequence of

analyses, but sufficiently long so that the diabatic tracers can accumulate a useful amount of

information about changes due to diabatic processes. As will be explained in Section 4, the

error development will be subdivided in three stages, each one lasting 24 hours. The first stage,

corresponding to segment C–D in the realised flow (refer to Fig. 1 for all segment definitions),

will be studied using segment C–d as proxy to the realised flow; the second stage, corresponding

to segment D–E, will be studied using segment D–e, and the third stage, corresponding to

segment E–F, will be studied using segment D–f. A common initialisation time for the study of

the second and third stages enables the tracking of the same air masses labelled by the tracer

θ0 throughout these two stages. The tracer θ0 = θ0(x, t) represents the potential temperature

that air at position x and time t had at the time of reinitialisation. Because the proxy to the

realised flow is a sequence of short-range hindcasts, the tracers in both the proxy to the realised

flow and the contemporaneous forecast have been re-initialised every day at 1200 UTC from 19

January to 22 January, inclusive.

All the hindcast simulations constituting the proxy to the realised flow and the contempora-

neous forecast were performed using the MetUM with the configuration described in Section 2.3.

This method enables process evaluation between states (up to the model’s temporal and spatial
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resolution) using θ and PV tracers for both the proxy to the realised flow and the contempora-

neous forecast. Therefore, this method enables a comparison of the modification of θ and PV

between these two hindcast sequences. However, the method does not allow us to definitely

associate forecast error growth with individual parameterised processes.

3 Case study

3.1 Overview of the operational forecast error

The forecast error development case presented here consists of the formation of a pronounced

ridge over the central North Atlantic which was noticeably underestimated at a lead time

beyond three days in several operational forecast systems, namely the ECMWF high resolution

forecast, the ECMWF EPS and MOGREPS-15. The case is characterised by the absence of

large errors in the upper-level flow in the North Atlantic prior to three days lead time and by

the absence of error propagation from upstream into the North Atlantic region.

In this section, we describe the development of forecast error in PV on the 320-K isen-

tropic level as a comparison between the ECMWF operational analysis and the ECMWF high-

resolution forecast. In subsequent sections, we shall describe the relationship of this error to

other important atmospheric features and fields: section 3.2 shows the relationship between the

forecast error on the 320-K PV field and forecast errors in the structures of collocated WCBs;

Section 3.4 shows the relationship between the errors in the 320-K PV and WCBs and errors

in mean sea level pressure.

Figure 2 illustrates the 320-K PV forecast error evolution between the forecast starting at

1200 UTC 19 January 2011 and the analysis for the four-day period ending on 1200 UTC 24

January 2011. The intersection of the tropopause and the isentropic surface in forecast and

analysis is also indicated in Fig. 2 by the corresponding 2-PVU contours (black for the analysis,

green for the forecast). Figure 2a shows PV error one day after the initialisation of the forecast

(D+1) at 1200 UTC 20 January 2011. The tropopause structure is similar between analysis

and forecast over the whole Northern Hemisphere and the PV errors are small. Two days later

(D+3, Fig. 2b) the location of the tropopause in analysis and forecast are still similar and the

PV errors are small (also valid for D+4, not shown). At 1200 UTC 24 January 2011 (D+5,

Fig. 2c), we observe two main regions with strong positive PV errors (> 5 PVU), one over

Alaska and one in the North Atlantic between 70◦W and 20◦W. Moreover, strong negative PV

errors are also found in the North Atlantic. In this region (indicated by the grey box) the

tropopause is located further south and west in the forecast than in the analysis, meaning that

the ridge building is underestimated in the forecast. The error in the PV signal in the North

Atlantic is thus related to the wrong representation of the ridge structure in the forecast. Over

the Pacific, the tropopause structures are much more similar in the forecast and analysis and

the PV errors are much weaker than over the North Atlantic.

The underestimation of the ridge area in the forecast after five days agrees well with the

results presented in Gray et al. (2014). They analysed seven winters and showed that the am-
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plitude of Rossby waves is reduced with increasing lead times up to five days. After that, a

saturation point is reached. Gray et al. (2014) notice that the reduced amplitude is consistent

with the under-representation of diabatic processes and transport of tropospheric air with re-

duced PV into the upper troposphere. As shown by Joos and Wernli (2012) and Chagnon et al.

(2013) one possible mechanism for the modification of upper-level ridge structure is the strongly

diabatic cross-isentropic flow of an ascending WCB. On the other hand, all the numerical models

considered here are highly nonlinear systems. Therefore, in addition to the potential misrep-

resentation of diabatic processes and their interactions with the model’s dynamical core, the

models exhibit high sensitivity to initial conditions which would be present in the development

of forecast error even if the forecasts were produced by a perfect model.

3.2 Relationship between the 320-K PV operational forecast error

and WCB

The formation of the upper-level PV anomaly described in Section 3.1 is associated with WCBs,

whose outflows reach into the upper-level ridges, both in the analysis and in forecasts. Even

though PV is strongly modified during the ascent due to diabatic processes, air masses in the

WCB start and end their ascent to the upper troposphere with low PV values (∼ 0.5 PVU) (e.g.

Wernli and Davies, 1997; Grams et al., 2011; Methven, 2015). Therefore, the WCBs contribute

to the building of the large upper-level ridges with low PV values which start to form around

1200 UTC 22 January 2011.

The right panels of Fig. 2 show an enlargement of the domain between 90◦W–0◦W and

30◦N–80◦N (grey boxes on left panels). In addition to the 320-K 2-PVU contour and the PV

forecast errors, WCB intersection points from the trajectories satisfying the ascent criteria

are displayed. The intersection points include all WCBs in the analysis and forecast that are

located at 320 K at the given time, independent of their starting time.

At 1200 UTC 20 January (D+1) no WCB trajectories are located at 320 K (Fig 2a), the

tropopause structure is similar in the forecast and analysis and the PV errors are very small.

Two days later (D+3, Fig. 2b, right panel), the first WCB trajectories cross the 320-K isentropic

surface and at similar locations in the analysis (black crosses) and forecast (green circles) and the

tropopause structure is still quite similar. At D+5 (Fig. 2c, right panel) more WCB intersection

points are found. They are located in the pronounced ridge, which extends from 40◦N-70◦N

and 20◦W-70◦W, thus covering a large part of the central North Atlantic (Fig. 2c, right panel).

The WCB trajectories in the analysis are located further north and are co-located with the

region of the large positive PV error, whereas the WCBs in the forecast are located further

south and east. Due to their importance for the formation or amplification of upper-level ridges

(Wernli and Davies, 1997; Grams et al., 2011; Methven, 2015), an error in the WCB outflows

can result in an error in the tropopause structure and the related PV field, as shown in Fig. 2c

(right panel).

For each analysis time , the PV anomaly, amplitude and location errors of the WCB outflows

in the forecast are determined for the domain over the North Atlantic (15◦N–90◦N, 100◦W–
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10◦E). The time series of the errors are shown in Fig. 3. To calculate the components P, A

and L we always use the WCB outflows, i.e. we use the position and PV values 48 hours after

the start of the ascent. Since the forecast is initialised at 1200 UTC 19 January 2011, the

first PAL values are computed 48 hours later, at 1200 UTC 21 January 2011. At this time,

the P value is positive, meaning that the PV anomaly in the forecast is too strong, but the

amplitude is well forecast (A close to zero), as is the location. However, at this stage, only a

few WCB trajectories (less than 100) are detected and the effect of the WCB on the upper-level

PV pattern is small.

The P, A and L values stay between -0.5 and 0.5 until 0000 UTC 24 January 2011, meaning

that the WCB outflows are quite well represented in the forecast. This is consistent with

the small PV error shown in Fig. 2b. However, starting from 0600 UTC 24 January 2011 a

drastic drop in the P term to negative values of about -1.5 PVU is observed, in conjunction

with an increase of the A value, whereas the L term remains small. This situation persists for

several analysis times until 0000 UTC 25 January 2011, with the maximal negative P value

observed at 1200 UTC 24 January 2011. The negative P value indicates that the PV anomaly

in the forecast is too weak. This is related to the meridional and vertical location of the WCB

outflow. In the analysis, the WCB outflow is further north and at similar location reaches a

higher isentropic level compared to the forecast (not shown). Further to the north as well as

higher up the climatological PV values are higher and therefore the resulting PV anomaly is

stronger in the analysis than in the forecast. At the same time, a positive A term implies an

overestimation of the number of WCB trajectories in the forecast. The A term is normalised

and the value of 0.712, found at 1200 UTC 24 January 2011, indicates that the forecast has

more than twice as many trajectories as the analysis. The L term is very small because it is

scaled with the domain size and so the small value implies that we are comparing the same

WCB systems. However, the total horizontal displacement between the centre of mass of the

WCB in the analysis and that in the forecast is still about 1200 km. A similar evolution of

the PAL values is also observed for forecast initialisation times of 1200 UTC 20 January and

21 January 2011 (not shown), and the development of the wrong ridge structure is consistent

over the different lead times (see also Fig. 4a).

Summarizing, starting at 0600 UTC 24 January 2011, there is an error in the strength of

the PV anomaly produced by the WCB outflows. The WCB outflow in the forecast is too far

south and east and its amplitude is overestimated. The poorly represented WCB outflow, which

persists over several consecutive analysis times, results in an erroneous ridge structure over the

North Atlantic and large PV errors, which can propagate and have a pronounced downstream

impact.

3.3 Reproducibility of operational forecast error development

Figure 4a shows 320-K 2-PVU contours in the analysis (black line) and in the ECMWF EPS

control members at different lead times (coloured lines), all valid at 1200 UTC 24 January 2011.

It shows general agreement between the different 2-PVU contours except in two areas: North
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America (Alaska and the north of Canada) and the North Atlantic. The horizontal extent of

the large ridge over the North Atlantic tends to decrease as forecast lead time increases. This

tendency leads to a configuration of the five-day forecast, that is very similar to that in the

high-resolution forecast for the same lead time (cf. Fig. 2c). Thus, this figure illustrates that

the development of the 320-K PV forecast error in the operational ECMWF high-resolution

forecast described in Section 3 occurs in a remarkably similar manner in other operational

forecast systems. In addition to the ECMWF high-resolution forecast and the control member

of the ECMWF EPS, the 320-K PV forecast error also develops in a similar manner in the

control member of MOGREPS-15. The configuration characteristics of these forecast systems

are shown in Table 1. Each forecast system is characterised by a given discretization method

(spectral in the ECMWF models versus finite-difference in the MetUM), horizontal grid spacing

(ranging from ∼ 20 km in the ECMWF high resolution forecast to ∼ 60 km in MOGREPS-

15), number of vertical levels, and location of upper-most level. There are also differences

in the physical parameterisation packages used by each model and the data used to provide

surface boundary conditions, such as sea surface temperature (SST). The reproducibility in the

development of the 320-K PV forecast error across different forecast systems indicates common

systematic errors across these systems.

The reproducibility of the forecast error development is not restricted to the control members

of the ECMWF-EPS and MOGREPS-15. Figure 4b shows 320-K 2-PVU contours in the

analysis (black line), the five-day forecast control member (red line) and the fifty ECMWF-

EPS members (grey lines) for the same forecast, all valid at 1200 UTC 24 January 2011. Even

though there is a range in Rossby-wave amplitudes, the ensemble members cluster around

the control member, with no member resembling the structure of the Rossby-wave in the

analysis. An equivalent figure constructed using the corresponding MOGREPS-15 output (not

shown) exhibits the same features just described with the ensemble clustering around the control

member and no member depicting the Rossby-wave structure in the analysis.

The ECMWF-EPS and MOGREPS-15 have been developed independently. As a result,

there are important differences between the formulations of these two ensemble prediction

systems. The ECMWF-EPS uses singular vectors for the generation of initial condition per-

turbations (Molteni et al., 1996) whereas in MOGREPS-15 these perturbations are generated

using an ensemble transform Kalman filter (Bishop et al., 2001; Bowler et al., 2008). Moreover,

both systems implement methods to represent variability due to model uncertainty, but these

methods are again different: while the ECMWF-EPS uses stochastic perturbation of physics

tendencies (Buizza et al., 1999), MOGREPS-15 uses random parameters and stochastic kinetic

energy backscatter to perturb the model physics (Bowler et al., 2008, 2009; Tennant et al.,

2011). Taking these differences into consideration, and assuming the absence of large errors in

the initial (beyond the reach of the initial condition perturbations) and boundary conditions,

the results just presented lead to two conclusions. First, in this case the forecast error develops

similar characteristics independently of the initial conditions or the strategy taken to generate

the initial condition perturbations. Therefore, even though the case exhibits sensitivity to ini-
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tial conditions leading to the spread around the control member in the five-day forecast, this

sensitivity does not explain the forecasts error. Thus, we can conclude that, in addition to the

inherent nonlinearity of the system, the development of forecast error in this case is potentially

heavily influenced by model error. Second, in spite of the use of stochastic perturbations, the

models show a strong tendency towards their own preferred state. This preferred state appears

to be similar for the ECMWF’s and Met Office’s models despite substantial differences in model

formulation and implementation, as described above.

As a final remark to this section, we emphasize that the forecast error development described

here appears to be a recurrent feature of the models, with other cases exhibiting the same

qualitative characteristics. For example, Mart́ınez-Alvarado (2014) showed a very similar error

development in the forecast of a large-amplitude Rossby-wave ridge on 25 November 2009.

Mart́ınez-Alvarado et al. (2014) showed that, like in this case, the Rossby-wave ridge was also

associated with a strong WCB.

3.4 Forecast error in MetUM hindcasts

We have shown that the development of the 320-K PV forecast error is highly reproducible.

We take advantage of this quality to carry out a hindcast simulation in which a realisation of

this same forecast error occurs. As described in Section 2.3, the simulations were performed

with the MetUM version 7.3 at a horizontal resolution of N512 (∼ 25 km grid spacing) and 70

vertical levels with the top of the model around 80 km. The model was run with its standard

physical parameterisation package and climatological SST (cf. Table 1). In support of the

error reproducibility argument, despite the differences in the set up of this model compared to

those already considered, the 320-K PV forecast developed an error with similar features to

those described in Sections 3.1 and 3.3. In this section we give an account of forecast error

development in terms of mean sea level pressure and relate this to forecast error in 320-K PV

(Section 3.1) and associated WCBs (Section 3.2). The following description has a very similar

counterpart in the three operational forecast systems discussed in Section 3.3.

Figure 5 shows three snapshots of the evolution of mean sea level pressure and 320-K PV in

the proxy to the realised flow (left column) and the contemporaneous forecast (right column).

The times shown are 1200 UTC 22 January 2011 (upper row, cf. Fig. 2(a,b)), 1200 UTC 23

January 2011 (middle row) and 1200 UTC 24 January 2011 (lower row, cf. Fig. 2(e,f)). On 22

January, the error in the 320-K PV is small relative to the error on 24 January. A comparison

of mean sea level pressure also shows small differences on 22 January. However, some of these

differences in mean sea level pressure are very important for the subsequent development of the

flow. In the proxy to the realised flow, there is a low-pressure system with a central pressure

around 1004 hPa, located off the east coast of Florida, United States (Fig. 5a). In contrast,

the equivalent system in the contemporaneous forecast appears as an elongated low-pressure

region, with lowest pressure around 1006 hPa, extending from Yucatán, Mexico to Florida

(Fig. 5b). For this low-pressure system, mean sea level pressure closed contours first appear

in both simulations at 0000 UTC 22 January 2011, i.e. 12 hours before the first time shown
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in Fig. 5. At that time, the mean sea level pressure minima were located over Florida and

Yucatán in the proxy to the realised flow and the contemporaneous forecast, respectively. This

location mismatch represents an error of 1100 km. In the proxy to the realised flow, the low-

pressure system forms as a secondary cyclone over the trailing cold front attached to the deep

low-pressure system (central pressure around 974 hPa) over Nova Scotia, Canada (Fig. 5a).

This low-pressure system over Nova Scotia is also present in the contemporaneous forecast

with the same intensity (Fig. 5b). However, the corresponding trailing cold front has a weaker

temperature gradient in this case (not shown), especially at its southern end, where the new

low-pressure system forms.

Figures 5(c,d) and 5(e,f) show the effects of the small cyclogenesis differences for the subse-

quent flow after 24 and 48 hours, respectively. The low-pressure system deepened and travelled

to the north in both simulations. However, it reached 986 hPa on 23 January (Fig. 5c) and

then 966 hPa on 24 January (Fig. 5e) in the proxy to the realised flow. In contrast, it only

reached 994 hPa on 23 January (Fig. 5d) and then 978 hPa on 24 January (Fig. 5f) in the

contemporaneous forecast. These differences in intensification rates are accompanied by differ-

ences in tropopause structure. A comparison of the 2-PVU PV contour on 23 January shows

that even though the amplitudes of the upper-level waves were similar in both simulations,

their longitudinal widths were different, ranging between 25◦W and 70◦W in the proxy to the

realised flow and between 25◦W and 75◦W in the contemporaneous forecast.

In terms of location, the low-pressure centre travelled faster in the contemporaneous forecast

to end up located only 500 km southeast relative to its location in the proxy to the realised flow

on 24 January. The development of the upper-level ridge followed that described in Sections 3.1

and 3.3. The ridge is more strongly influenced by cyclonic circulation induced by the low-

pressure system in the proxy to the realised flow than in the contemporaneous forecast, so that

its western flank wraps around the parent cyclone.

An additional difference between the proxy to the realised flow and the contemporaneous

forecast lies in the development of the preceding low-pressure system located to the north of

Newfoundland. Its location is very similar on 24 January in both simulations. However, this

system decays more rapidly in the proxy to the realised flow than in the contemporaneous

forecast: the increase in central pressure is 24 hPa in the former while it is only 8 hPa in the

latter between 22 January and 24 January.

4 Forecast error and diabatic processes

In this section we investigate the diabatic processes that are associated with the forecast error

development by performing a comparison of the modification of θ and PV between the proxy

to the realised flow and the contemporaneous forecast. The error development is subdivided in

three stages. The first stage corresponds to the early development of the low-pressure system

off Florida (Fig. 5a) between 1200 UTC 21 January and 1200 UTC 22 January (segment C–D,

refer to Fig. 1 for all segment definitions). The second stage corresponds to the intensification
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of the low-pressure system (Fig. 5c) between 1200 UTC 22 January and 1200 UTC 23 January

(segment D–E). Finally, the third stage corresponds to the development of the upper-level

ridge (Fig. 5d) between 1200 UTC 22 January and 1200 UTC 24 January (segment E–F). The

analysis of these three stages is performed through diagnosis of modifications to θ and PV.

As explained in Section 2.3.2, the first stage is studied using the proxy to the realised flow

between 1200 UTC 21 January and 1200 UTC 22 January (segment C–d). In order to track

the same air masses labelled by the tracer θ0 throughout the second and third stages, a common

initialisation time is used for these two stages. Thus, the second and third stages are studied

using the proxy to the realised flow initialised at 1200 UTC 22 January. The second stage is

studied using segment D–e while the third stage is studied using segment D–f.

4.1 First stage: Early cyclone development

Figure 6 shows θ0 on the 300-K isentropic surface at the end of the 24-hour period starting at

1200 UTC 21 January 2011 in the proxy to the realised flow (Fig. 6a) and the contemporaneous

forecast (Fig. 6b), i.e. segments C–d and C’–D’ in Fig. 1, respectively. The gray shading in

Fig. 6 corresponds to θ values around the nominal value of the isentropic surface. Colours above

the gray shading on the colour scale represent cross-isentropic descent while colours below the

gray shading on the colour scale represent cross-isentropic ascent.

The regions of diabatic activity are similar in the two simulations. There is cross-isentropic

ascent of up to 20 K close to the preceding northern low-pressure system (denoted C1 in Fig. 6)

and along its trailing cold front. There is also cross-isentropic descent on both sides of the

frontal ascent. The main differences between the simulations occur on the southern end of

the trailing cold front, around the location of the developing cyclone off the coast of Florida

(denoted C2 in Fig. 6a). In the proxy to the realised flow (Fig. 6a), the higher frontal intensity

has induced stronger cross-isentropic ascent than in the contemporaneous forecast (Fig. 6b).

Figure 7a shows total modification of θ in the proxy to the realised flow on a vertical section

through the low-pressure centre (segment A–B in Fig. 6), located at 77◦W. There are two

locations with strong heating, around 80◦W and 70◦W. The shallow column of heating around

80◦W, extending from the surface to 700 hPa, forms the leading edge of the cross-isentropic

ascent region wrapping cyclonically around the low-pressure centre (Fig. 6a). The boundary

layer parameterisation is the main contributor to this column of heating (Fig. 7b) but the

convection parameterisation also contributes, especially in the layer between 290 K and 300 K

(Fig. 7c); the other contributors to the heating are small by comparison. These contributions

are consistent with the rain rate partition between convective and large-scale rain, which shows

that the convective rain was more intense than large-scale rain in the region of interest (not

shown). The second location of strong heating, located around 70◦W, is formed by a column of

deep convection ascending over a katafront (see contours of equivalent potential temperature in

Fig. 7c). This column is also accompanied by clouds and so resembles the cloud column along

the WCB in extratropical cyclones (see relative humidity contours in Fig. 7a). The convection

parameterisation is the main contributor to this column of heating (Fig. 7c). Figure 7a also
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shows regions of cooling. This cooling is located at cloud top level and is due to the radiation

parameterisation scheme (not shown).

Diabatic activity, defined by changes in θ, is distributed similarly in the contemporaneous

forecast. However, there are important differences in its morphology and intensity between

simulations. Figure 7d shows total modification of θ in the contemporaneous forecast on the

same section as that in Fig. 7a. As in the proxy to the realised flow, there is a region of heating

around 80◦W in the contemporaneous forecast, and it is mainly caused by the boundary layer

parameterisation. However, in this case, this region of heating is very much restricted to the

surface, barely reaching 900 hPa. The parameterised diabatic processes responsible for the

diabatic activity distribution are the same in both simulations, namely the parameterisations

of boundary layer (Figs. 7(b,e)), convection (Figs. 7(c,f)) and radiation (not shown). There is

also a region of strong heating around 70◦W in the contemporaneous forecast. As in the proxy

to the realised flow, this region is caused by convection. However, in this case, the region with

convective influence is deeper and more upright than in the proxy to the realised flow (Fig. 7f),

possibly as a response to differences in katafront structure (cf. equivalent potential temperature

contours in Fig. 7c). The differences in the tropopause are due to error in the location of an

intrusion of stratospheric air that in the contemporaneous forecast is located more to the west

than in the proxy to the realised flow. A comparison between Figs. 7(a,d) also shows stronger

diabatic activity in the realised flow than in the contemporaneous forecast.

The changes in θ are accompanied by changes to the circulation, which can be described

in terms of PV modification. In the proxy to the realised flow, positive PV modification

contributing to the initial cyclone development is found along the trailing cold front peaking

around the 295-K isentropic surface in the proxy to the realised flow (not shown). In this case,

the process that contributed the most to PV production in this region was the parameterised

convection, through the generation of a heating maximum above the 295-K isentropic surface.

In contrast, PV production in the contemporaneous forecast is much weaker and much less

organised than in the proxy to the realised flow.

4.2 Second stage: Cyclone intensification

Figure 8 shows θ0 on the 320-K isentropic surface at the end of the 24-hour period starting at

1200 UTC 22 January 2011 in the proxy to the realised flow (Fig. 8a) and the contemporaneous

forecast (Fig. 8b), i.e. segments D–e and D’–E’ in Fig. 1, respectively. Diabatic activity is

located in similar regions in the proxy to the realised flow and the contemporaneous forecast,

with isentropically ascending air filling the western flank of the corresponding ridge. However, at

this isentropic level, cross-isentropic ascent is more intense in the proxy to the realised flow, with

a larger proportion of air originating between 290 K and 300 K than in the contemporaneous

forecast. Furthermore, the region of cross-isentropic ascent is more zonally elongated in the

contemporaneous forecast than in the proxy to the realised flow.

A more comprehensive comparison between the proxy to the realised flow and the contem-

poraneous forecast can be achieved by statistical analysis of air throughout the troposphere
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that has undergone cross-isentropic ascent and is located under the tropopause dome. This air

mass is formally defined as the air satisfying the following two conditions:

θ0 > 280 K and 10 < ∆θ < 50 [K], (4)

where ∆θ = θ− θ0. The quality of the following results does not change if the actual threshold

values are changed within reason. Conditions (4) are applied to a region enclosing the ridge of

interest in both the proxy to the realised flow and the contemporaneous forecast. This definition

includes all the blue-shaded regions within the ridge of interest in Fig. 8.

Figure 9 shows joint probability density functions (PDFs) characterising these air masses.

Figures 9(a,b) show the joint PDF at 1200 UTC 22 January, represented by (θ0, PV0) (black

contours), and at 1200 UTC 23 January, represented by (θ, PV) (colour shading), in the proxy

to the realised flow (Fig. 9a) and the contemporaneous forecast (Fig. 9b). These PDFs represent

the air mass evolution during the past 24 hours.

In the proxy to the realised flow, a largely monomodal PDF with a shallow peak centred

around (0.25 PVU, 300 K) evolves into another largely monomodal PDF with a shallow peak

centred around (0.1 PV, 315 K) (see Fig. 9a). Secondary peaks also appear below (around

(0.15 PVU, 307 K)) and above (around (0.05 PVU, 327 K)) the primary peak. In the contem-

poraneous forecast, the initial PDF is also largely monomodal but its peak is sharper than in

the proxy to the realised flow. This PDF evolves into a fuzzy distribution with no clear maxima

(Fig. 9b).

These evolution differences result in clear differences in the mean rate of change of θ and

PV over 24 hours. Figure 9c shows the joint PDFs for (∆PV, ∆θ)/∆t, where ∆t = 24 h, in the

proxy to the realised flow (colour shading) and the contemporaneous forecast (black contours).

In general, the mean rate of change of θ is well represented by the contemporaneous forecast.

However, the peak in the PDF of the proxy to the realised flow is much narrower (along the

∆θ/∆t axis) than in the contemporaneous forecast indicating that the latter tends to have

greater variability in heating rates around the most frequent values 1. Larger differences are

found in the mean rate of change of PV with the whole forecast distribution displaced to the

right with respect to the proxy to the realised flow. This displacement indicates a tendency

in the proxy to the realised flow to destroy PV that is not matched in the contemporaneous

forecast during this period.

4.3 Third stage: upper-level ridge development

Figure 10 shows θ0 on the 320-K isentropic surface at the end of the 48-hour period starting at

1200 UTC 22 January 2011 in the proxy to the realised flow (Fig. 10a) and the contemporaneous

forecast (Fig. 10b), i.e. segments D–f and D’–F’ in Fig. 1, respectively. Notice that this period

includes the period discussed in Section 4.2. At this time, the upper-level ridge has fully

1N.B. Here, the term ‘variability’ refers to the variability within the population of grid points satisfying
conditions (4). It does not refer to variability among ensemble members as we are not discussing ensembles in
this Section
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developed in both simulations. In the proxy to the realised flow, the ridge is constituted

primarily by air that has undergone rapid cross-isentropic ascent (up to 40 K (48 h)−1) filling

most of the ridge area towards its centre and eastern flank. The western flank of the tropopause

ridge, on the other hand, is formed by air that has undergone weak cross-isentropic subsidence

(|∆θ| < 10 K (48 h)−1). This latter feature is not found in the contemporaneous forecast on this

isentropic level inside the tropopause ridge. Instead, the tropopause ridge is composed almost

entirely by cross-isentropic ascent. The parameterised process responsible for cross-isentropic

descent along the western flank of the ridge in this case is long-wave radiation. However, cross-

isentropic descent alone is not sufficient to explain the expansion of the ridge area without a

mechanism to reduce the high values of PV characterising the cross-isentropically descending

air. In this case, the PV reduction is induced by the upper part of the heating maximum due

to the cloud microphysics scheme. A detailed analysis of these processes is beyond the scope of

this article, whose focus are processes within the WCB. However, they will be further analysed

in a forthcoming article.

The cross-isentropic ascent during this period is analysed through the joint PDFs shown in

Fig. 11. Figure 11a shows the evolving joint PDFs from 1200 UTC 22 January (θ0, PV0) to

1200 UTC 24 January (θ, PV) in the proxy to the realised flow. Notice that even though the

(θ0, PV0) PDFs in this and the previous stage correspond to the same time, the PDFs are not

expected to be the same because the selection criteria (4) are applied at the end of each study

period. The (θ0, PV0) PDF is largely monomodal and it is centred around the same values

(0.25 PVU, 300 K), as in the previous stage. Furthermore, this PDF evolves into another

largely monomodal PDF. However, the new PDF is centred around (0.05 PVU, 325 K), i.e.

at a higher isentropic level than in the previous stage, indicating the further cross-isentropic

ascent, by further 10 K, of air masses reaching 315 K during the previous stage. This subsequent

cross-isentropic ascent is accompanied by further PV reduction.

Figure 11b shows the evolving joint PDFs (θ0, PV0) → (θ, PV) in the contemporaneous

forecast. The evolution depicted by these PDFs is similar to that in the proxy to the realised

flow. However, there are important differences. First, the distribution centre of the (θ0, PV0)

PDF in the contemporaneous forecast is located at a higher isentropic level (around 307 K)

than in the proxy to the realised flow (around 300 K). Second, the maximum of the (θ, PV)

PDF in the contemporaneous forecast is located at a slightly higher isentropic level (around

327 K) than in the proxy to the realised flow (around 325 K). Comparing Fig. 11a and b, the

peak of the distribution is broader than in the case of the proxy to the realised flow, spanning

4 K × 0.25 PVU in contrast to 2 K × 0.12 PVU.

These evolution differences result in the joint PDFs for (∆PV, ∆θ)/∆t, where ∆t = 48 h,

shown in Fig. 11c. In terms of changes in θ, the broader tails, which during the first 24 hours

were restricted to the most frequent values, are now a general feature so that the whole distribu-

tion is more elongated in the ∆θ/∆t direction. In terms of PV modification, the correspondence

between PDFs is better for the whole 48-hour period than for the initial 24-hour period (cf.

Fig. 9c), during which PV modification was clearly overestimated. This response indicates a
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compensation taking place during the second half of the 48-hour period, which is achieved by

an overestimation of heating during the last 24 hours.

5 Summary and conclusions

We have performed a detailed investigation of a case study of forecast error development in 320-

K PV. The development of forecast error in this case is consistent with the features described

in the statistical analysis of forecast error by Gray et al. (2014). Specifically, it is characterised

by a reduction in Rossby-wave ridge area with increasing forecast lead time (Figs. 2 and 4a).

It has been shown that the 320-K PV forecast error is associated with errors in WCB

forecasts. Trajectories were calculated to locate air parcels in the WCB outflow inside the

corresponding Rossby-wave ridge in analysis and forecasts (Fig. 2, right panels). The PAL

diagnostic method was then employed to provide a quantitative assessment of the errors in the

forecasts of WCBs. The PAL method showed the sudden development of forecast error in WCB

during 24 January 2011, characterised by an overestimation of WCB amplitude, a location of

the WCB outflow regions too far to the south and east and a resulting underestimation of the

PV anomaly at the outflow (Fig. 3). These forecast error characteristics persisted for at least 24

hours, corresponding with the time span of the error in ridge structure over the North Atlantic.

The first part of the analysis was performed on data from the ECMWF high-resolution

forecast. However, a key feature of the forecast error development case is its reproducibility

across several operational forecast systems, which, after assuming the absence of extremely

large errors in the initial and boundary conditions, can be regarded as an indication of com-

mon systematic errors across these systems, in addition to the inherent high sensitivity to

initial conditions. Indeed it was found that essentially the same forecast error developed in

the ECMWF EPS and the Met Office MOGREPS-15, despite differences in forecast system

formulations (Table 1). Moreover, the MetUM simulations performed as part of this work also

exhibited the same essential forecast error characteristics. These findings are consistent with

Gray et al. (2014), who showed that the error development in the control members of ECMWF

EPS and MOGREPS-15 exhibit similar behaviour, while the NCEP model (not analysed here)

showed different characteristics. It has also been shown here that the reproducibility of error

development is not restricted to the control members of the two considered EPSs (Fig. 4b):

The forecast error development showed the same qualitative features independently of initial

conditions, which suggests that, in addition to inherent chaos, model error is an important

contributor to the development of forecast error in this case.

The connection of WCBs with their parent cyclones immediately indicates a link between

cyclone development and 320-K PV forecast error development. In this case the large 320-K

PV error on 24 January 2011 is related to a cyclone that formed two days before. It has been

shown that this cyclone is present in both analysis and forecast (Fig. 5). However, the time

of cyclogenesis is slightly delayed in the forecast and the subsequent cyclone intensity is un-

derestimated. Despite this underestimation throughout the cyclone’s life cycle, the associated
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WCB’s intensity is overestimated. This seemingly paradoxical result could be explained by

differences in the moisture reservoir the cyclones in the analysis and forecast have access to.

Indeed the surface cold front of the forecast cyclone reaches more southern latitudes, where

moisture availability is larger, than the analysis cyclone’s front. Other aspects that could have

had an effect on the intensities of the cyclone and the resulting WCBs include the representation

of cold-frontal precipitation bands (Lackmann, 2002) and the representation of the air-sea inter-

actions between the cold front and the Gulf Stream oceanic front (Cione et al., 1993; Li et al.,

2002). Even though further analysis would be required to confirm these hypotheses, this case

illustrates the highly complex relationship between cyclone intensity and WCB intensity.

The development of forecast error has been divided into three stages: (i) early cyclone devel-

opment, (ii) cyclone intensification and (iii) upper-level ridge development. Diabatic processes

were studied during these three stages to determine key differences between two simulations:

a proxy to the realised flow, consisting of three short-term simulations reinitialised every day,

and a contemporaneous forecast, consisting of a single free-running simulation initialised at a

single time (see Fig. 1).

The analysis of the first stage was carried out for the 24-hour period between 1200 UTC 21

January and 1200 UTC 22 January. During the first stage, the main differences between proxy

to the realised flow and contemporaneous forecast were found near the surface. The cyclone

that gave rise to the upper-level ridge developed along the southern end of a parent cyclone’s

trailing cold front (Fig. 6). The main differences appear precisely at this end of the front, which

is more active in the proxy to the realised flow, inducing stronger cross-isentropic ascent than

in the contemporaneous forecast. The strong cross-isentropic ascent in the proxy to the realised

flow is achieved through contributions from the boundary layer scheme, which in the MetUM

includes calls to the cloud microphysics parameterisation scheme, to balance the moisture and

temperature fields, and the convection parameterisation (Fig. 7). Even though the sources

of error are related to processes taking place at or near the surface, a definite attribution is

not possible. Errors in surface processes can be due either to incorrect parameterisation of

surface fluxes or incorrect specification of boundary conditions (e.g. sea-surface temperatures)

or both. The initial forecast error in the cyclone might be related to the interaction of the

cold front with the Gulf Stream oceanic front and associated with air-sea exchanges, which are

generally difficult to represent in weather prediction models (Moore and Renfrew, 2002) and

are important for the cyclone intensification (Cione et al., 1993; Li et al., 2002).

The analysis of the second stage was carried out for the subsequent 24-hour period. During

the second stage, differences in air mass redistribution at upper levels (e.g. 320-K isentropic

surface) become more evident (Fig. 8). Cross-isentropic ascent is less intense and the incipient

ridge already has a more zonal structure in the contemporaneous forecast than in the proxy to

the realised flow. The evolution properties of cross-isentropically ascending air within the ridge,

immediately below the tropopause dome, were analysed statistically (Fig. 9). This statistical

analysis revealed greater variability in heating rates around the most frequent values in the

contemporaneous forecast than in the proxy to the realised flow, indicating a spuriously wide
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range in the end values of θ in the contemporaneous forecast. This same analysis also revealed

a tendency for the destruction of PV in the proxy to the realised flow that was not matched in

the contemporaneous forecast.

The analysis of the third stage was carried out starting from the same time as for the second

stage, but over a 48-hour period. During the third stage, the upper-level ridge fully develops

in both simulations. Important differences appear in the origin of the air that constitutes the

ridge in each simulation. The ridge is formed in both simulations mainly by cross-isentropically

ascending air. However, the western flank of the ridge in the proxy to the realised flow exhibits

cross-isentropically descending air; this feature is not present within the ridge in the contem-

poraneous forecast (Fig. 10). The cross-isentropic descent was accompanied by reduction of

PV air in an interplay between the radiation parameterisation scheme inducing cooling and

the cloud microphysics parameterisation scheme inducing a reduction in PV at upper levels. A

statistical analysis of the evolution properties of cross-isentropically ascending air within the

ridge, immediately below the tropopause dome, was also carried out for this stage (Fig. 11).

This analysis also showed greater variability in heating rates in the contemporaneous forecast

than in the proxy to the realised flow, and therefore the production of spuriously wide range in

the end values of θ in the contemporaneous forecast. The modification of PV over the 48-hour

period exhibits similar distribution between the proxy to the realised flow and the contempora-

neous forecast, indicating that the underestimation of PV destruction during the first 24-hour

period was corrected at the expense of an overestimation during the second 24-hour period.

Our results, linking the occurrence of error in forecasts of 320-K PV with errors in WCB

forecasts and errors in the modification of θ and PV, support the conclusions of previous

studies which point towards the importance of the representation of latent heat release in

WCBs, driving changes in θ and determining the isentropic level of the WCB outflow (e.g.

Mart́ınez-Alvarado et al., 2014). Recent theoretical work (Methven, 2015), case studies (Wernli,

1997; Joos and Wernli, 2012) and climatological studies (Wernli and Davies, 1997; Madonna et al.,

2014) show that the net modification of PV along the WCB will be small independently of the

diabatic processes that the WCB air might be subject to. However, our results also show that

there are clear differences in the net PV modification by the WCB between an approximation

to the realised flow and a contemporaneous forecast. The joint differences in the modification

of θ and PV are indicative of major differences in tropopause structure (e.g. major differences

in ridge amplitude in the case presented here). Thus, we go one step further by showing that

indeed differences in θ and PV modification translate into very different atmospheric evolution

paths, one close to reality and one far away from it. One of the main assumptions in this work

is that the model behaviour is close to the atmosphere’s behaviour for short forecasting times

(up to two days). Comparisons between the short-term forecasts and analyses at the end of

the forecasting period (not shown) provide us with reassurance about the validity of this as-

sumption. Understanding the development of error in one system might lead to understanding

the error development in other systems. The challenge is to separate the generic findings from

those particular to the forecast system under scrutiny.
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There are several questions arising from this work. (1) What is the relative importance of

individual parameterised/diabatic processes to the development of forecast error in this case

study? (2) Here we have shown that errors in mean sea level pressure led to errors in the WCB

and then to errors in the 320-K PV. Is this link systematic and is it possible to systematically

link other forecast error types in routes to forecast error? (3) Different weather patterns are

very likely to produce different error developments, e.g. cyclone clustering leads to unbroken

wave trains that remain for several days unlike the case discussed here, in which the wave grows

almost in isolation. Thus, what other routes to forecast error are there? (4) If indeed there

are other routes to forecast error, what is the importance of the route to error described here

relative to others in terms of frequency of occurrence and impacts? We leave these questions

as motivation for future work.
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Table 1: Operational forecasting systems included in the comparison. (RTG SST stands for
Real-time, global, sea surface temperature analysis; OSTIA stands for Operational Sea Surface
Temperature and Sea Ice Analysis.)

Model Version Discretization Horizontal Vertical levels SST
grid spacing (model top)

ECMWF CY36r4 Spectral T1279 91 OSTIA /
high resolution (∼ 20 km) (0.01 hPa) RTG SST

ECMWF CY36r4 Spectral T639 62 OSTIA /
EPS (∼ 40 km) (5 hPa) RTG SST

MOGREPS-15 10 Finite N216 70 OSTIA
(MetUM 7.6) differences (∼ 60 km) (80 km,

∼ 0.005 hPa)
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Figure 1: Schematic describing the sequence of simulations to produce the proxy to the realised
flow and the contemporaneous forecast. s represents the model’s phase space.
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Figure 2: Forecast error (in PVU, colour shading) and 2-PVU contours in the analysis (black)
and in the forecast with initialisation time 1200 UTC 19 January 2011 (green) valid at 1200
UTC on (a) 20 January 2011 (D+1), (b) 22 January 2011 (D+3) and (c) 24 January 2011
(D+5). All the fields are plotted on the 320-K isentropic surface. The right panels show
zoomed-in details inside the grey boxes (30◦N–80◦N, 90◦W–0◦W) marked in the left panels.
They also show WCB intersection points with the 320-K isentropic surface at the given time in
the analysis (black crosses) and the forecast (green circles), independent of when they started
to ascend.
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Figure 5: 320-K 2-PVU contours (bold lines) and mean sea level pressure (thin lines, in hPa)
with a contour interval of 4 hPa in (a,c,e) the proxy to the realised flow and (b,d,f) forecasts
valid on (a,b) 1200 UTC 22 January 2011 (c,d) 1200 UTC 23 January 2011 and (e,f) 1200
UTC 24 January 2011. Forecasts initialised at 1200 UTC 19 January 2011.
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Figure 7: Cross-sections along segment A–B in Fig. 6 showing θ modification in (a,b,c) proxy
to realised flow and (d,e,f) contemporaneous forecasts for the period 1200 UTC 21 January
2011 to 1200 UTC 22 January 2011: (a,d) total modification, (b,e) modification due to the
boundary layer parameterisation, and (c,f) modification due to the convection parameterisa-
tion. Initialisation time for the forecast is 1200 UTC 19 January 2011. The cyclone’s centre
along the section is marked by the label C2. Thin black lines represent θ contours (in (a,b,d,e))
and equivalent potential temperature (in (c,f)), in K, with a contour interval of 5 K; bold black
lines represent 2-PVU PV contours, and purple lines in (a,d) represent relative humidity with
respect to ice (solid – 80% contour; dashed – 90% contour).

33



−
120 −

60 0

30 30

60 60

(a) Proxy, 23 January 2011 1200 UTC
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Figure 8: As in Fig. 6, but for the 320-K isentropic surface and for the period 12 UTC 22
January 2011 to 1200 UTC 23 January 2011.
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Figure 9: Joint PDFs for the period 1200 UTC 22 January 2011 to 1200 UTC 23 January
2011: (a) PV versus θ in the proxy to the realised flow, showing the distribution at the start
(black contours) and at the end of the period (colour shading); (b) as in (a) but for the
contemporaneous forecast; (c) rate of change in PV versus rate of change in θ in the proxy to
the realised flow (colour shading) and in the contemporaneous forecast (black contours). The
colour scale has been chosen to make this figure comparable to Fig. 11. All the PDF portions
shown represent at least 85% probability.
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Figure 10: As in Fig. 6, but for the 320-K isentropic surface and for the period 12 UTC 22
January 2011 to 1200 UTC 24 January 2011.
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Figure 11: As in Fig. 9, but for the period 1200 UTC 22 January 2011 to 1200 UTC 24 January
2011.
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