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Abstract. A method is proposed for merging different nadir-

sounding climate data records using measurements from

high-resolution limb sounders to provide a transfer function

between the different nadir measurements. The two nadir-

sounding records need not be overlapping so long as the

limb-sounding record bridges between them. The method is

applied to global-mean stratospheric temperatures from the

NOAA Climate Data Records based on the Stratospheric

Sounding Unit (SSU) and the Advanced Microwave Sound-

ing Unit-A (AMSU), extending the SSU record forward in

time to yield a continuous data set from 1979 to present, and

providing a simple framework for extending the SSU record

into the future using AMSU. SSU and AMSU are bridged us-

ing temperature measurements from the Michelson Interfer-

ometer for Passive Atmospheric Sounding (MIPAS), which

is of high enough vertical resolution to accurately represent

the weighting functions of both SSU and AMSU. For this

application, a purely statistical approach is not viable since

the different nadir channels are not sufficiently linearly in-

dependent, statistically speaking. The near-global-mean lin-

ear temperature trends for extended SSU for 1980–2012 are

−0.63± 0.13, −0.71± 0.15 and −0.80± 0.17 K decade−1

(95 % confidence) for channels 1, 2 and 3, respectively. The

extended SSU temperature changes are in good agreement

with those from the Microwave Limb Sounder (MLS) on

the Aura satellite, with both exhibiting a cooling trend of

∼ 0.6± 0.3 K decade−1 in the upper stratosphere from 2004

to 2012. The extended SSU record is found to be in agree-

ment with high-top coupled atmosphere–ocean models over

the 1980–2012 period, including the continued cooling over

the first decade of the 21st century.

1 Introduction

Stratospheric cooling has long been regarded as a key in-

dicator of two anthropogenic climate forcings (IPCC 2013;

WMO, 2014): that from increasing abundances of CO2, and

that from the ozone decline associated with the increased

abundances of ozone-depleting substances (ODSs). The for-

mer has continued secularly, while the latter peaked in the

late 1990s and has been slowly declining since then. Thus,

the contrast between the early and more recent parts of the

stratospheric temperature record is an important fingerprint

of anthropogenic influence (Shepherd and Jonsson, 2008). In

addition to the anthropogenic influences, stratospheric tem-

perature is also strongly perturbed by the 11-year solar cy-

cle and by volcanic eruptions. As a consequence, the anthro-

pogenic cooling is considerably modulated in time.

In the stratosphere, global-mean temperature is, to a first

approximation, unaffected by dynamics and is therefore

close to radiative equilibrium (Fomichev, 2009). This makes

it an ideal quantity for detection and attribution of anthro-

pogenic influence (Shine et al., 2003). However, global av-

erages are only obtainable from satellites, and the only long-

term satellite record of stratospheric temperature is that from

the operational nadir sounders, the Stratospheric Sounding
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Unit (SSU)/Microwave Sounding Unit (MSU) and the Ad-

vanced Microwave Sounding Unit-A (henceforth AMSU)

(Randel et al., 2009), which represent deep atmospheric lay-

ers. Note that the vertically resolved temperature data from

global positioning system (GPS) radio occultation only be-

gin in the current century (Wickert et al., 2001), and do not

reach into the upper stratosphere, where the strongest cool-

ing is found. The nadir-sounding measurements were never

designed for climate monitoring, and homogenizing the data

from different operational satellites, with rapidly drifting or-

bits, is a challenge (Wang et al., 2012; Zou et al., 2014; Nash

and Saunders, 2015).

In the lower stratosphere, the relevant nadir record is pro-

vided by MSU channel 4 (and continued by AMSU channel

9; Christy et al., 2003; Mears and Wentz, 2009) and is sup-

plemented by radiosondes and, since the early 2000s, by GPS

radio occultation. The global-mean MSU4 record is consid-

ered fairly reliable and most attention has been focused on its

latitudinal structure (Randel et al., 2009).

The middle and upper stratosphere is, however, a com-

pletely different story. There the nadir record is provided

by three SSU channels which began in 1979 and ended in

2006, and by six AMSU channels which began in 2001 and

are ongoing. Because the weighting functions of the SSU

and AMSU channels are very different, the two records can-

not be immediately combined. Moreover, confidence in the

SSU record has been low, even for global-mean temperature,

because of the lack of corroborative measurements, drift is-

sues within the SSU record itself, and the striking differences

identified by Thompson et al. (2012) between the two SSU

products available at that time (from the National Oceanic

and Atmospheric Administration (NOAA) and the Met Of-

fice) and between the measurements and chemistry-climate

models.

Normally, differences between measurements and models

would tend to cast suspicion on the models, not the mea-

surements. However, because global-mean stratospheric tem-

perature is radiatively controlled, its behaviour in the mid-

dle and upper stratosphere, where the radiative processes are

well understood, should be reasonably well represented by

chemistry-climate models. Indeed, Fig. 2 of Thompson et

al. (2012) shows that for the SSU channels the differences

in cooling between models and observations, and between

the Met Office and NOAA products of the time, are in al-

most all cases much larger than the inter-model spread. One

of the mysteries arising from Thompson et al. (2012) was the

apparent lack of continued cooling in the SSU record during

the early 2000s, in contrast to the models and in contradic-

tion to physical expectations. Because the SSU record ended

in 2005, this mystery was unresolved.

The large differences between the NOAA SSU results and

models found by Thompson et al. motivated the development

of a revised version of NOAA SSU (version 2), the results

of which are published in Zou et al. (2014). The version

2 global-mean temperatures exhibit weaker long-term cool-

ing trends than the version 1 temperatures that are shown in

Thompson et al. (by∼ 30 % for channels 1 and 3 and∼ 17 %

for channel 2). Although Zou et al. did not compare their re-

sults to models, visual inspection of their version 2 temper-

atures indicates much closer agreement with the model re-

sults shown in Thompson et al. (2012). There has also been

a subsequent revision of the Met Office data set (Nash and

Saunders, 2015).

In this paper, we propose a method for merging differ-

ent nadir-sounding climate data records, and apply it to the

NOAA SSU and AMSU global-mean stratospheric temper-

ature records. Specifically we use the AMSU data to extend

the three SSU channels forward in time, given the paradig-

matic importance of that climate data record. We show that

a purely statistical approach, using multiple linear regres-

sion, is unworkable for this particular application since the

six AMSU channels are not sufficiently linearly independent.

Instead, we propose a physically based method using limb-

sounding measurements, with much higher vertical resolu-

tion, to accurately represent the weighting functions of both

SSU and AMSU and thereby act as a transfer function be-

tween the two nadir-sounding data sets. For this purpose we

use temperature data from the Michelson Interferometer for

Passive Atmospheric Sounding (MIPAS). It is important to

emphasize that the merged data set can only be as good as

the component data sets going in, and relies on the exten-

sive efforts spent on homogenizing the SSU and AMSU data

records themselves.

Since we are dealing with monthly mean, global-mean

data, the data are highly averaged and the effect of random

measurement errors is expected to be low. Characterization

of the systematic errors in such highly averaged quantities in

a bottom-up fashion would be extremely challenging (Heg-

glin et al., 2013). Instead, our approach is to compare the dif-

ferent data sets (after transformation via the weighting func-

tions) over their overlap periods to see whether the differ-

ences between them can be characterized in terms of a con-

stant offset (within some noise). If this is the case, then the

merging can be done with confidence. Thus, the validity of

the approach can be assessed a posteriori. This approach was

followed by Hegglin et al. (2014) in constructing a merged

stratospheric water vapour record. Solomon et al. (2010)

also performed such an additive relative bias correction to

merge the Halogen Occultation Experiment (HALOE) and

Microwave Limb Sounder (MLS) stratospheric water vapour

records. Thus there is ample precedent for such an approach

in the literature.

The data sets used are described in Sect. 2. The merging

methodology and the comparison between MIPAS and the

two nadir-sounding records are provided in Sect. 3.1. This

comparison shows that the different global-mean data sets

track each other very well, so additive relative biases can be

identified with small uncertainties. Section 3.2 examines the

(near) global-mean temperature trends, both over the recent

record (as represented by the six AMSU channels) where we

Atmos. Chem. Phys., 15, 9271–9284, 2015 www.atmos-chem-phys.net/15/9271/2015/
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compare the MIPAS and AMSU trends to those from MLS

on the Aura satellite, and over the extended SSU record. The

extended SSU record is found to be in agreement with high-

top coupled atmosphere–ocean models over the 1980–2012

period, including the continued cooling over the first decade

of the 21st century. Conclusions are drawn in Sect. 4.

2 Description of data sets

2.1 SSU

SSU is a three-channel infrared radiometer on board a series

of NOAA satellites which measures temperatures over deep

layers in the stratosphere. The near-global (∼ 85◦ S to 85◦ N)

data set extends from 1979 until early 2006. We use version

2 brightness temperatures (Zou et al., 2014), as well as the

weighting functions for the three channels. The data set is

produced by the NOAA Center for Satellite Applications and

Research (STAR) and is available at ftp://ftp.star.nesdis.noaa.

gov/pub/smcd/emb/mscat/data/SSU/SSU_v2.0/.

As stated in the Introduction, version 2 was developed pri-

marily as a result of the large differences found between SSU

version 1 (Wang et al., 2012) and a Met Office version of

SSU, as well as between SSU version 1 and models, that

were documented in Thompson et al. (2012). Differences

from version 1 include improvements in the radiance calibra-

tion and in the adjustments for diurnal drift and intersatellite

biases. Please refer to Zou et al. (2014) for an in-depth dis-

cussion of the differences.

2.2 AMSU

AMSU-A is a microwave radiometer on board a series

of recent, current and future NOAA satellites. It has 11

channels, 6 of which (channels 9 to 13) provide cover-

age in the stratosphere. The instrument was first launched

in 1998, although not all of the stratospheric channels

were in operation until 2001. We use brightness tem-

peratures analysed by NOAA STAR (Wang and Zou,

2014), which are available at ftp://ftp.star.nesdis.noaa.gov/

pub/smcd/emb/mscat/data/AMSU_v1.0/monthly. The corre-

sponding weighting functions for channels 9 to 14 were pro-

vided courtesy of Likun Wang of NOAA STAR. The temper-

ature data for channels 9 to 13 start in January 1999; those

for channel 14 start 2 years later. As with SSU, the AMSU

data extend from ∼ 85◦ S to 85◦ N.

2.3 MIPAS

MIPAS is a limb sounder which measured infrared emission

from which vertical profiles of temperature and atmospheric

constituents are derived (Fischer et al., 2008). We use zonal

and monthly mean gridded temperatures computed from

versions V3o_T_10 and V5r_T220 for the periods 2002–

2004 and 2005–2011, respectively. These data are available

at http://www.esa-spin.org/index.php/spin-data-sets and are

provided on a 5◦ latitude grid from ∼ 75◦ S to 75◦ N with

28 pressure levels ranging from 300 to 0.1 hPa. The parent

data were produced by the Institute for Meteorology and Cli-

mate Research at Karlsruhe Institute of Technology, in co-

operation with the Institute of Astrophysics of Andalusia,

from calibrated radiance spectra provided by the European

Space Agency. The MIPAS temperature retrieval method is

discussed in von Clarmann et al. (2003) for the high-spectral-

resolution measurement period until 2004 and in von Clar-

mann et al. (2009) for the reduced spectral resolution mea-

surement period from 2005 onwards. MIPAS temperatures

have been validated by Wang et al. (2005) and Stiller et

al. (2012).

2.4 MLS

Aura MLS is a limb sounder that measures thermal mi-

crowave emission. It has provided a nearly continuous set

of measurements of temperature and trace gases in the mid-

dle atmosphere since August 2004. The data extend near

globally and from the middle troposphere to the lower ther-

mosphere. We use version 3.3 temperature data (Livesey et

al., 2011) through to the end of 2011. The temperature re-

trieval method and validation are discussed in Schwartz et

al. (2008).

2.5 CMAM30

The CMAM30 data set, which extends from 1979 to 2011, is

produced using a specified-dynamics version of the Cana-

dian Middle Atmosphere Model (CMAM) that is driven

by winds and temperatures from the interim version of

the European Centre for Medium-Range Weather Forecasts

Reanalysis (ERA Interim; Dee et al., 2011), where the

global-mean temperatures have been adjusted in the upper

stratosphere to remove temporal discontinuities in 1985 and

1998 that have arisen from the introduction of new satel-

lite data in the assimilation process (McLandress et al.,

2014). Here we use the monthly mean CMAM30 tempera-

tures, which are available at http://www.cccma.ec.gc.ca/data/

cmam/output/CMAM/CMAM30-SD/mon/atmos/.

2.6 CMIP5

Coupled atmosphere–ocean models from phase 5 of the Cou-

pled Model Intercomparison Project (CMIP5) are also exam-

ined. Most of these models are not chemistry-climate mod-

els and do not have upper boundaries extending high into

the stratosphere or above. The nine models that are used are

listed in Table 1. To span the period extending from 1979 to

2012, data from the historical experiment (ending December

2005) and the Representative Concentration Pathway (RCP)

4.5 experiment (a projection starting in January 2006) are

employed. Since the RCP 4.5 simulations use as initial con-

ditions data from the end of the historical simulations, the

www.atmos-chem-phys.net/15/9271/2015/ Atmos. Chem. Phys., 15, 9271–9284, 2015
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Table 1. CMIP5 models used in this study. The number of ensem-

ble members for the historical and RCP 4.5 experiments are listed

in the second and third columns, respectively. The fourth column

lists the SSU channels onto which the data are projected, which is

determined by the height of the top data level: channel 1 (any model

with data at 1 hPa), channels 1 and 2 (any model with data at pres-

sure levels below 1 hPa), and channels 1–3 (any model with data at

pressure levels below 0.1 hPa).

Model Historical RCP 4.5 SSU channels

CanESM2 1 5 1

GFDL-CM3 5 1 1

HadGEM2-CC 3 1 1, 2

MIROC4h 3 3 1

MIROC-ESM 3 3 1, 2, 3

MIROC-ESM-CHEM 1 9 1, 2, 3

MPI-ESM-LR 3 3 1, 2, 3

MPI-ESM-P 2 0 1, 2, 3

MRI-CGCM3 5 1 1, 2, 3

two simulations for a given model are continuous and, thus,

can be simply concatenated to produce a single time series.

Since we use only the first few years of the RCP 4.5 simula-

tion, differences between it and the three other RCP simula-

tions (RCP 2.5, 6 and 8.5) are expected to be very small. Fol-

lowing Thompson et al. (2012) the SSU channels onto which

the data are projected depend on the height of the top model

data level: channel 1 (any model with data at 1 hPa), chan-

nels 1 and 2 (any model with data at pressure levels below

1 hPa), and channels 1–3 (any model with data at pressure

levels below 0.1 hPa).

2.7 CCMVal2

Chemistry-climate model (CCM) simulations of the recent

past from phase 2 of the Chemistry-Climate Model Valida-

tion (CCMVal2) project are used. These REF-B1 simula-

tions use observed sea-surface temperatures and sea-ice dis-

tributions and observed forcings (volcanic aerosols, tropo-

spheric concentrations of greenhouse gases, ozone-depleting

substances, and solar variations). The data are available

at the SPARC Data Center at http://www.sparc-climate.

org/data-center/data-access/. The following 16 models, all

with model tops above 1 hPa, were used: AMTRAC3,

CCSRNIES, CMAM, CNRM-ACM, EMAC, EMAC-FUB,

GEOSCCM (and hist-GEOSCCM), LMDZrepro, MRI,

Niwa-SOCOL, SOCOL, ULAQ, UMETRAC, UMUKCA-

METO, UMUKCA-UCAM and WACCM; these model

acronyms are defined in Morgenstern et al. (2010). Two mod-

els (CAM3.5 and E39C) were excluded because their up-

per boundaries were at pressures above 1 hPa. A third model

(UMSLIMCAT) was excluded because the file containing the

zonal and monthly mean temperature data did not have a lati-

tude array. For model data sets containing a missing data flag

for points below ground, those points were filled using tem-

peratures from the first good data point above. Since such

points occur at high latitudes (Antarctica) and at pressure

levels corresponding to altitudes far below the peak of the

SSU weighting functions, their impact on the SSU-weighted

near-global mean is negligible. The CCMVal2 models are de-

scribed in Morgenstern et al. (2010).

3 Results

This section is divided into two parts. The first part (Sect.

3.1) pertains to the merging of the SSU and AMSU data

sets. Since this is achieved using MIPAS data as a trans-

fer function, we begin by demonstrating that MIPAS is in

good agreement with SSU and AMSU. We then describe the

algorithm used to merge SSU and AMSU, and present the

merged results. The second part (Sect. 3.2) is an analysis of

temperature trends for the post-2000 time period when the

AMSU, MIPAS and MLS data are all available, as well as

a comparison of our “extended” SSU results to other long-

term data sets, including models. All results presented here

are for monthly and near-global means (75◦ S to 75◦ N). This

particular latitude range is dictated by the use of the MIPAS

data in merging the SSU and AMSU data sets.

3.1 Merging SSU and AMSU

3.1.1 Comparisons to MIPAS

In order to compare MIPAS to SSU and AMSU, the MIPAS

temperatures must be averaged in the vertical using the SSU

and AMSU weighting functions, which are shown in the left

and right panels of Fig. 1, respectively (thick solid curves).

For simplicity we follow Thompson et al. (2012) in us-

ing fixed weighting functions, rather than attempting to ac-

count for possible state dependence. The three SSU weight-

ing functions (channels 1–3) peak at approximately ∼ 30, 39

and 44 km. The six stratospheric AMSU weighting functions

(channels 9–14) peak at ∼ 17, 20, 25, 30, 37 and 42 km. The

other curves in the left panel of Fig. 1 will be discussed in

due course.

The vertical averaging is performed on a log-pressure

height grid, with the limits of integration being the cor-

responding height range of the MIPAS data: 300 hPa

(∼ 8.4 km) and 0.1 hPa (∼ 64.5 km). The vertically averaged

temperature for channel n (denoted Tn) is therefore given by

Tn (t)=

∫ zt

zb

T (t,z)Wn (z)dz, (1)

where t is time in months and z is the log-pressure height

[z=−H ln(p/ps), with H = 7 km and ps = 1000 hPa], and

zb and zt are the limits of integration, namely z(300 hPa)

and z(0.1 hPa). Before computing the vertical average, the

weighting functions are normalized so that their vertical in-

tegral from zb to zt equals 1.

Atmos. Chem. Phys., 15, 9271–9284, 2015 www.atmos-chem-phys.net/15/9271/2015/
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Figure 1. Vertical weighting functions (thick solid curves) for SSU

(left) and AMSU (right). The thin solid and dotted curves in the

left panel are, respectively, the normalized and unnormalized fits to

the SSU weighting functions obtained using the AMSU weighting

functions using Eq. (3); see text for details.

By excluding the lower troposphere and upper mesosphere

in Eq. (1), the full vertical integrals of the weighting func-

tions are approximated. This approximation is less accu-

rate for SSU than it is for AMSU since the SSU weighting

functions extend down lower and up higher than for AMSU

(Fig. 1). To investigate the possible impact of this incom-

plete vertical averaging using the SSU weighting functions,

we first filled the MIPAS temperature data below 300 hPa

and above 0.1 hPa using the corresponding CMAM30 data,

and then performed the integration using zb = 0 km to

zt ∼= 100 km. The resulting vertically averaged temperatures

for the three SSU channels (not shown) are virtually indis-

tinguishable from those obtained by averaging only over the

MIPAS domain (8–65 km), leading us to conclude that the ef-

fect of the incomplete vertical sampling of the integral given

by Eq. (1) is negligible.

Figure 2 compares the SSU-weighted MIPAS tempera-

tures to SSU for 2002–2007, the years when the two instru-

ments overlap. The thick and thin lines denote, respectively,

the results with and without the seasonal cycle included,

where the seasonal cycle is given by the first three harmonics

of the annual cycle. The MIPAS time series have each been

offset by a constant amount with respect to SSU, with the

offset being determined so that the mean difference between

the deseasonalized MIPAS and SSU time series is zero over

the 4-year overlap period. The offsets are small: ∼−0.2 K

for channels 1 and 3 and ∼−0.7 K for channel 2. There is

very good agreement between MIPAS and SSU for the sea-

sonal cycle; however, as will be discussed later, the MIPAS

data exhibit a larger trend than does SSU (see Fig. 9).

Figure 3 shows the corresponding results for AMSU and

AMSU-weighted MIPAS. As in Fig. 2, the MIPAS results are

offset with respect to AMSU, with the magnitude of the off-
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Figure 2. SSU (red) and SSU-weighted MIPAS (blue) temperatures

for channels 1–3. The thin curves are the deseasonalized tempera-

tures. The weighted MIPAS temperatures are offset by a constant

amount so that the mean difference between the deseasonalized

SSU and MIPAS time series is zero; the value of this offset is la-

belled in each panel. In this and all other figures, monthly and near-

global (75◦ S to 75◦ N) means are shown, and the tick marks di-

rectly above each year label on the horizontal axes are for January

of that year.

sets again all being less than 1 K. As seen with SSU, there

is very good agreement between MIPAS and AMSU for the

seasonal cycle, but with MIPAS exhibiting stronger cooling

in the upper three channels (12–14). We will discuss this

trend difference in Sect. 3.2 when we compare the trends to

MLS.

3.1.2 Algorithm for merging SSU and AMSU

Since the SSU and AMSU weighting functions differ in

shape and height of the maxima, the two data sets must be

combined by taking suitably weighted averages of the differ-

ent channel temperatures. One way this might be done would

be purely statistically, fitting the deseasonalized temperatures

of instrument A to instrument B using multiple linear regres-

sion as follows:

T̂ A
n (t)=

∑m2

m=m1
αmT

B
m (t), (2)

www.atmos-chem-phys.net/15/9271/2015/ Atmos. Chem. Phys., 15, 9271–9284, 2015
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where T̂ A
n (with the hat) denotes the fitted deseasonalized

temperature from channel n of instrument A, T B
m denotes

the actual deseasonalized temperature from channel m of in-

strument B, and the constants αm are the coefficients deter-

mined using a least-squares fit. However, this method, which

we shall refer to as the temperature-fit method, is problem-

atic because the time series used in computing the fit (T B
m )

are highly linearly dependent, as is shown in Fig. 4 in the

case where B=AMSU. The top panel shows the deseason-

alized temperature anomalies for the six channels superim-

posed. Adjacent or near-adjacent channels are highly corre-

lated. Given the overlap in the AMSU weighting functions

(W ), some correlation is to be expected. For example, for the

highest three channels, the overlap between W13 and W14 is

∼ 61 %, betweenW12 andW13 it is∼ 60 % and betweenW12

and W14 it is ∼ 31 %. However, the fact that the correlations

are actually close to unity for those pairs of channels, i.e.

r(13,14)∼ 0.96, r(12,13)∼ 0.96 and r(12,14)∼ 0.88, sug-

gests that they also reflect strong vertical relationships in

the variability of global-mean temperature. A similarly high

correlation of 0.91 is found between channels 9 and 10,

while channel 11 is highly correlated with both channel 10

(r ∼ 0.90) and channel 12 (r ∼ 0.87). Thus, there appear to

be only two degrees of freedom among the six channels, rep-

resenting the upper stratosphere and the lower stratosphere.

Similarly high correlations are found, albeit with more noise,

in the CMAM30 data shown in the bottom panel of Fig. 4,

which is plotted over the 1979 to 2011 period. The high cor-

relations between the different channel temperatures means

that the system of equations defined by Eq. (2) is highly un-

derconstrained, and that there are no unique values of the co-

efficients αm. This was verified in a calculation in which one

of the αm’s was specified and the remaining ones were com-

puted, which yielded an almost identical temperature time

series yet with very different coefficients. For this reason the

temperature-fit method will not be used.

An alternative method, which is the method we have

adopted, is to determine the fit coefficients from the weight-

ing functions. Such a method has also been examined by the

Remote Sensing Systems group, which has processed and

combined the SSU data (C. Mears, personal communication,

2014). Using the weighting functions to generate the tem-

perature fit coefficients makes physical sense since it is the

channels of instrument B that have weighting functions peak-

ing closer to the peak of a given weighting function of in-

strument A that should be given the most weight in the fit.

Another advantage of this method is that it does not require

the two temperature data sets to overlap in time, as does the

temperature-fit method.

The weighting function fit method proceeds as follows. We

first express the channel-n weighting function of instrument

A as a linear combination of the weighting functions of in-

strument B:

ŴA
n (z)=

∑m2

m=m1
βmW

B
m(z), (3)

Table 2. Unnormalized coefficients βm for AMSU channelsm= 9–

14 of the fits to the three SSU weighting functions n= 1–3 used in

Eq. (3).

AMSU SSU (n= 1) SSU (n= 2) SSU (n= 3)

channel (m)

14 0.018 0.313 0.786

13 0.114 0.300 −0.267

12 0.422 0.185 0.334

11 0.226 0.100 −0.117

10 0.146 0.048 0.098

9 0.053 0.021 −0.017

where the hat denotes the fitted weighting function. The con-

stants βm are computed using least squares and are normal-

ized so that
∑m2
m=m1

βm = 1. The deseasonalized tempera-

tures for channel n of instrument A are then constructed as

follows:

T̂ A
n (t)= cn+

∑m2

m=m1
βmT

B
m (t), (4)

where the constants cn represent an additive relative bias be-

tween the two measurements.

The dotted curves in the left panel of Fig. 1 are the fits

to the three SSU weighting functions using the six AMSU

weighting functions (m1 = 9 and m2 = 14), computed using

Eq. (3), but before the βm’s are normalized. The values of

the unnormalized βm’s are given in Table 2. The reason that

they do not sum to unity is due to incomplete sampling of

the target weighting function. As seen in Fig. 1 the fits to

SSU channels 1 and 2 are excellent, with the only significant

departures from the true weighting function occurring below

∼ 10 km and above∼ 50 km, where the SSU weighting func-

tions do not have much strength anyway. Not surprisingly,

the fit is poorest for the upper SSU channel 3 since there are

no AMSU weighting functions that peak above it. The corre-

sponding fits using the normalized βm’s are given by the thin

solid curves.

The reason for normalizing the βm’s becomes apparent by

considering the case of a constant temperature To profile with

an assumption of no relative bias between instruments A and

B, in which case it can be easily shown that

cn = To(1−
∑m2

m=m1
βm). (5)

Since we have assumed no relative bias between the

two instruments, cn should vanish. This will only occur if∑m2
m=m1

βm = 1.

To compute cnwe use temperatures from a third instrument

(C), which overlaps in time with instruments A and B and is

of high enough vertical resolution that a sufficiently accurate

representation of the temperatures obtained from the weight-

ing functions of both instruments A and B can be computed.

In this case, instrument C provides a transfer function be-

tween instruments B and A, whereby cn can be expressed as

Atmos. Chem. Phys., 15, 9271–9284, 2015 www.atmos-chem-phys.net/15/9271/2015/



C. McLandress et al.: A method for merging nadir-sounding climate records 9277

AMSU Channel 14

2002 2004 2006 2008 2010 2012
248

249

250

251

252

253

T
em

p
er

at
u

re
 [

K
]

MIPAS + 0.83 K
AMSU

AMSU Channel 13

2002 2004 2006 2008 2010 2012
237

238

239

240

241 MIPAS - 0.43 K
AMSU

AMSU Channel 12

2002 2004 2006 2008 2010 2012

228

229

230

231

T
em

p
er

at
u

re
 [

K
]

MIPAS - 0.09 K
AMSU

AMSU Channel 11

2002 2004 2006 2008 2010 2012
220.0

220.5

221.0

221.5 MIPAS + 0.28 K
AMSU

AMSU Channel 10

2002 2004 2006 2008 2010 2012
Year

212.5

213.0

213.5

214.0

214.5

T
em

p
er

at
u

re
 [

K
]

MIPAS + 0.05 K
AMSU

AMSU Channel  9

2002 2004 2006 2008 2010 2012
Year

209.5

210.0

210.5

211.0

211.5
MIPAS - 0.50 K
AMSU

Figure 3. AMSU (red) and AMSU-weighted MIPAS (blue) temperatures for channels 9–14. The thin curves denote the deseasonalized

temperatures. See the Fig. 2 caption for more details.

the sum of three biases, namely

cn = EA–C+EC–B+EW , (6)

where

EA–C ≡ 〈T
A
〉− 〈T AC

〉, (7)

EC–B ≡

∑
m

βm

[
〈T BC
m 〉− 〈T

B
m 〉

]
, (8)

EW ≡ 〈T
AC
〉−

∑
m

βm〈T
BC
m 〉, (9)

where the angle brackets denote a time average, and, as be-

fore, all temperatures are deseasonalized. For clarity, we have

omitted the subscript n since it is common to all terms. The

quantities T AC and T BC denote the temperatures of instru-

ment C that have been averaged in the vertical using the

weighting functions for instruments A and B, respectively.

The first term (EA–C) in Eq. (6) denotes the relative bias be-

tween the temperature of instrument A and the instrument

A-weighted temperature of instrument C. The second term

(EC–B) is the same but for instrument B (with a minus sign),

where the summation over m is required since we are com-

puting the temperature bias for channel n of instrument A.

The third term (EW ) is the weighting function bias, which

accounts for the error in the fits to the weighting functions;

this term must be evaluated using the height-dependent tem-

peratures from instrument C. If the period over which the

time averages of the different terms in Eq. (6) are computed

is the same, then

cn = 〈T
A
〉−

∑m2

m=m1
βm〈T

B
m 〉, (10)

in which case instrument C is not needed. The advantage of

Eq. (6) over Eq. (10), however, lies in the fact that instru-

ment C enables us to separate the relative biases into differ-

ent components. Moreover, if there is a gap in time between

instruments A and B, but instrument C still overlaps with in-

struments A and B, then Eq. (10) could not be used.

3.1.3 Merging SSU and AMSU using MIPAS

Here we consider only the case where we extend SSU for-

ward in time, which means that A=SSU and B=AMSU

in Eq. (4). While it is certainly possible to extend AMSU

backward (i.e. A=AMSU and B=SSU), we do not do so

because the weighting function bias terms (EW ) are substan-

tially larger when fitting the three broad SSU weighting func-

tions to the six narrower AMSU weighting functions.

Table 3 shows the different bias terms given in Eq. (6),

which are used to compute cn in Eq. (4). The bottom row

lists the sum of the three biases, which are the cn’s. The

magnitudes of the individual bias terms are all less than

1.2 K, with some cancellation between the different terms.

The ESSU-MIPAS term is identical to the offsets between SSU

and SSU-weighted MIPAS shown in Fig. 2. The weighting

function term EW is largest for channel 3 since the fit is the

poorest (see Fig. 1). Figure 5 shows the difference between

the deseasonalized SSU temperatures and the fitted tempera-
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Figure 4. Top: deseasonalized AMSU temperature anomalies with

respect to the 1999–2011 mean for channels 9 to 13 and the

2001–2011 mean for channel 14, with the variance of each chan-

nel normalized to 0.25 K2. Bottom: same but for AMSU-weighted

CMAM30 for the 1979 to 2011 time period. The correlation coeffi-

cient between the different channels is labelled in each panel.
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Figure 5. Difference between the deseasonalized SSU temperatures

and the fitted temperatures computed using AMSU, i.e. T SSU
n −∑m2

m=m1
βmT

AMSU
m . The horizontal lines are the constants cn used

in Eq. (4). See text for more details.

tures computed using AMSU as a function of time, and indi-

cates that the relative biases (whose means are the cn’s) are

fairly stable in time. The standard deviations of the differ-

ences, which provide a conservative measure of the uncer-

tainty of the fits, are 0.06, 0.09 and 0.09 K for channels 1,

2 and 3, respectively. These values are clearly much smaller

than the dynamic range seen in Fig. 6, which shows the SSU

data (black) and the corresponding extension derived from

AMSU and MIPAS using Eqs. (4) and (6) for the 1979–2012

time period. These fit uncertainties have been propagated

into our trend uncertainties; the effects are small although
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Figure 6. Deseasonalized temperatures for SSU channels 1–3

(black) and the fits computed from AMSU (red) using Eqs. (4) and

(6). The insets show blow-ups of the time series in the overlap pe-

riod (with the SSU time means subtracted off), along with the cor-

relation coefficients (r) between each pair of curves.
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Figure 7. Deseasonalized temperature anomalies for extended SSU

(red) and the CMIP5 multi-model mean (black). The light-grey

curves are the time series of the individual CMIP5 models used to

compute the multi-model mean. Anomalies are computed with re-

spect to 1979–1982; thus the time mean anomaly over this period is

zero.

not entirely negligible for the 1980–2012 period. The insets

show blow-ups of the two time series in the overlap period,

along with the corresponding correlation coefficients r . The

agreement between the two time series is very good, with the

highest correlation occurring for the lowest channel. Even

for channel 3, where the fit to the weighting function is the

poorest, the correlation coefficient is 0.895, which suggests

that the global-mean temperature variations in this region are

vertically coherent.
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Table 3. The three bias terms in the expression for cn in Eq. (6)

for n= 1–3 in the case where instrument A=SSU, B=AMSU and

C=MIPAS. Units are K. The sum of the terms, which is listed in the

bottom row, is the constant cn used in Eq. (4). See text for details.

Bias SSU (n= 1) SSU (n= 2) SSU (n= 3)

ESSU-MIPAS −0.173 −0.744 −0.241

EMIPAS-AMSU 0.087 0.007 −0.686

EW 0.398 0.334 1.196

Sum (cn) 0.312 −0.403 0.269

The SSU and fitted SSU deseasonalized temperature

time series can be combined into a single time series,

which we shall refer to as the “extended SSU” time series

T̃ SSU
n (denoted with a tilde), as follows:

T̃ SSU
n = α (t)T SSU

n +β(t)T̂ SSU
n , (11)

where T̂ SSU
n is the time series computed using Eqs. (4) and

(6), and the time-dependent coefficients α and β are given by

α (t)= 1 for t ≤ t1

α (t)= 1−
(t − t1)

(t2− t1)
for t1 ≤ t ≤ t2

α (t)= 0 for t ≥ t2

and β = 1−α, where t1 = 2001.00 and t2 = 2006.25 are the

start and end dates of the overlap period between SSU and

AMSU channel 14. The extended SSU temperatures, ex-

pressed as anomalies with respect to the 1979–1982 mean,

are shown in Fig. 7 (red curves). The other curves in this fig-

ure will be discussed in the next section.

3.2 Stratospheric temperature trends

In this section we take a closer look at the temperature trends

in the first decade of this century using not only the AMSU

and MIPAS data but also MLS. We then take a step back

and re-examine the long-term trends in the context of model

simulations.

Figure 8 compares AMSU temperatures (black) to the

AMSU-weighted results computed from MIPAS (blue) and

MLS (red), with the latter two being offset with respect to

AMSU for display purposes. The offsets are computed so

that the time means in the overlap period are identical to

those of AMSU. As remarked earlier, the AMSU-weighted

MIPAS temperatures exhibit stronger cooling in the upper

channels than do AMSU. MIPAS is known to have a drift due

to time-dependent detector nonlinearity, which had not been

considered for the calibration of radiance spectra used here

(e.g. Eckert et al., 2014). A latitude- and altitude-dependent

drift of MIPAS temperatures relative to MLS of the order

of −1 K decade−1 has been identified for most parts of the

stratosphere (Eckert, 2012), which is in agreement with the

trend differences found here. A refined calibration, which

takes the time dependence of the detector nonlinearity into

account, is currently under investigation. The MLS results,

however, do not show such an effect, and are in fact in better

agreement with AMSU on a year-to-year basis.

The temperature trends from MIPAS and MLS computed

from 2004 to 2012 are shown in Fig. 9 as a function of height.

Two types of uncertainties are shown. The first assumes the

data points are independent (thick error bars and dark shad-

ing); this is appropriate when comparing trends between dif-

ferent data sets over the same time period, where the differ-

ences will be mainly instrumental. The second takes into ac-

count serial correlation using the lag-1 autocorrelation coef-

ficient to estimate the reduced number of degrees of freedom

following Santer et al. (2000) (thin error bars and light shad-

ing). Since serial correlation is a property of the atmosphere,

not of a particular instrument, the lag-1 autocorrelation co-

efficient computed from the MLS data is used in calculating

the reduced number of degrees of freedom for the sparser

MIPAS data. Although the time period is relatively short,

global-mean temperature exhibits limited internal variability

(since it is under radiative control) and so the uncertainties

in the trends in the upper stratosphere are relatively low. Su-

perimposed in Fig. 9 are the AMSU trends (black circles)

and the AMSU-weighted MLS and MIPAS trends (black

squares). The weighted trends are seen to lie along a verti-

cally smoothed version of the profile trends. As was seen in

Fig. 8, the agreement between MLS and AMSU is excellent

(left panel), while MIPAS shows substantially stronger cool-

ing trends in the upper stratosphere (right panel). The same

conclusions can be inferred from the trends from extended

SSU (red circles) and SSU-weighted MLS and MIPAS (red

squares), computed for the 2004–2012 period, which are also

shown in Fig. 9.

Although MLS uses as its a priori an analysis that has

assimilated AMSU radiances, the impact of AMSU on the

MLS temperatures is thought to be relatively small since

the MLS retrievals are more susceptible to vertical varia-

tions much shorter than the widths of the AMSU weighting

functions (M. Schwartz, personal communication, 2014). We

therefore believe that the good agreement between MLS and

AMSU is real and therefore an independent validation of the

MLS data, while the strong cooling in the MIPAS data is at-

tributed to its known drift. It is not clear whether the zig-zag

vertical structure seen in the MLS profile trends is real, and

we note that the model trends (cf. Fig. 10) do not exhibit such

a structure.

We now return to Fig. 7, which shows the extended SSU

temperature anomalies (with respect to 1979–1982) plotted

from 1979 to 2012, along with those from the CMIP5 mod-

els. Near-global-mean model temperatures are constructed

from monthly means and vertically averaged using the SSU

weighting functions using Eq. (1), with the limits of integra-

tions being zb = 0 km and zt = the height corresponding to

the top pressure level provided by each model data file, nor-
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Figure 8. Deseasonalized temperatures for AMSU channels 9–14 (black) and the corresponding AMSU-weighted temperatures computed

from MIPAS (blue) and MLS (red). The constant offsets between MIPAS and AMSU and between MLS and AMSU are labelled in each

panel.
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Figure 9. Linear temperature trends for MLS (left) and MIPAS

(right) computed from 2004 to 2012. The solid curves are com-

puted from the height-dependent data; the black and red squares

are the corresponding AMSU-weighted and SSU-weighted results

plotted at the heights of the weighting function maxima shown in

Fig. 1 and offset slightly in the vertical for clarity. The black and

red circles are the corresponding trends from AMSU and extended

SSU. The channel numbers range from 14 (3) at the top to 9 (1)

at the bottom for AMSU (SSU). The dark- and light-grey shading,

as well as the thick and thin error bars, denote the 95 % confidence

levels computed assuming, respectively, independent and serially

correlated data; see text for details.

malizing the weighting functions to have a vertical integral

of unity over the data height range. As explained in Sect. 2.6

(see also Table 1), the CMIP5 models with poor vertical reso-

lution in the stratosphere are not projected onto all three SSU

channels, which explains why more grey curves are present

in the bottom panel than in the top panel. The agreement be-

tween the CMIP5 multi-model mean (black) and extended

SSU (red) is remarkably good. The good agreement from

1979 to 2006 has arisen, of course, because we are using ver-

sion 2 of the NOAA SSU data. However, as noted earlier,

Zou et al. (2014) did not compare SSU version 2 to models;

here we do. After 2006 (the end of the SSU data record) the

extended SSU temperatures also compare favourably with

the CMIP5 models, with both exhibiting continued strato-

spheric cooling followed by warming starting in about 2009.

The cooling is due to a combination of the effects of increas-

ing CO2 and the declining phase of the previous solar cycle,

while the warming is presumably due to the current solar cy-

cle, which commenced in 2008. Note that the CMIP5 RCP

simulations included a solar cycle by repeating the last solar

cycle (1996–2008) into the future.

Figure 10 compares the long-term temperature trends for

extended SSU and the CMIP5 models (1980–2012; left)

and for extended SSU and the CCMVal2 models (1980–

2005; right). For 1980–2012 the trends for extended SSU are

−0.63± 0.13, −0.71± 0.15 and −0.80± 0.17 K decade−1

for channels 1, 2 and 3, respectively. The 95 % uncertain-
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ties, which are computed the same way as in Fig. 9, take

into account serial correlation. The extended SSU cooling

trends for 1980 to 2005 are ∼ 9 % larger than those for

1980–2012 for channel 1 and ∼ 15 % larger for channels

2 and 3. This reflects the much weaker cooling rate over

the second half compared with the first half of the extended

record. In all cases, the SSU-weighted model trends (squares)

agree with the observed trends within the uncertainties (er-

ror bars). The cooling increases with increasing altitude for

both the models and the observations. Although the chan-

nel 3 extended SSU trend is considerably weaker than the

CCMVal2 trend profile at the altitudes where the weighting

function peaks (∼ 44 km), the channel 3 CCMVal2 trend is

entirely consistent with the extended SSU trend. This dif-

ference between the weighted and profile trend is due to

the large curvature in the profile trend. This illustrates why

nadir measurements should never be directly compared with

profile measurements. For the CMIP5 models the curvature

of the profile trend is much weaker than for the CCMVal2

models, which explains why the weighted and profile trends

are in much closer agreement. The lack of strong cooling

above ∼ 40 km in the CMIP5 models is presumably a result

of coarser stratospheric resolution and lower upper bound-

aries than the CCMVal2 models, which also have more com-

prehensive physical parameterizations for the middle atmo-

sphere.

Figure 11 shows near-global-mean temperature differ-

ences for extended SSU and the CCMVal2 multi-model

means for the period of strong ozone depletion (1986–1995;

left) and the start of ozone recovery (1995–2004; right).

(Note that for these periods, the merging is irrelevant and

the comparison is basically with the version 2 NOAA SSU

record itself.) We prefer differences to linear trends for this

purpose because of the highly nonlinear time evolution. To

minimize the impact of solar variability, which clearly has a

large modulating effect on the long-term cooling (e.g. Fig. 7),

we compare the two recent decadal periods between solar

minima. For extended SSU, distinct cooling of about −0.7 K

is seen at all levels over 1986–1995, whereas negligible cool-

ing is found over 1995–2004. This highlights the important

role of ozone depletion in the observed stratospheric cool-

ing up to the mid-1990s. A similar though somewhat less

pronounced contrast between the two periods is seen in the

temperature differences from the models.

4 Conclusions

We present a physically based method for merging near-

global-mean brightness temperatures from SSU and AMSU

using measurements from a third instrument, in this case

MIPAS, which has high enough vertical resolution that it can

sufficiently accurately simulate the vertically weighted tem-

peratures of both SSU and AMSU. The SSU temperatures

are expressed as a linear combination of AMSU tempera-
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Figure 10. Temperature trends for extended SSU and the CMIP5

multi-model mean for 1980–2012 (left) and extended SSU and the

CCMVal2 multi-model mean for 1980–2005 (right). The trend pro-

files and weighted trends for the models are given by the lines and

squares. The latter are plotted at the heights of the maxima of the

three SSU weighting functions; for clarity the symbols for the mod-

els are offset slightly with respect to extended SSU. The error bars

denote the 95 % confidence levels.
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Figure 11. Temperature differences for extended SSU and the

CCMVal2 multi-model mean for 1986–1995 (left) and 1995–2004

(right). The CCMVal2 temperature difference profiles are given by

the black curves, the SSU-weighted CCMVal2 differences by the

black squares and the extended SSU differences by the open cir-

cles. The latter two are plotted at the heights of the maxima of the

three SSU weighting functions, ranging from channel 3 at the top to

channel 1 at the bottom; the symbols are offset slightly in the verti-

cal for clarity. The error bars denote the 95 % confidence levels. The

differences are computed from data that have been averaged over 2

years spanning each of the two end points.

tures, with the coefficients determined by fitting the AMSU

weighting functions to the SSU weighting functions. The

MIPAS data are used in matching the SSU temperatures and

the AMSU-simulated SSU temperatures.

Multiple linear regression does not work for merging the

SSU and AMSU temperatures because the AMSU chan-

nels are not sufficiently linearly independent (in a statistical

sense) and thus the determination of the regression coeffi-

cients is underconstrained. Part of the correlation between

the channels arises from the overlap of the weighting func-
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tions, but part reflects strong vertical relationships in the vari-

ability of global-mean temperature.

The relative bias between SSU and the AMSU-simulated

SSU channels is expressed as a sum of three relative biases:

between SSU and MIPAS, between the SSU channels and

the AMSU-simulated SSU channels (both applied to MIPAS

data), and between MIPAS and AMSU. In this way, MIPAS

is used as a transfer function between SSU and AMSU.

In this particular case, SSU and AMSU overlap in time

and so a transfer function is not strictly required, but our

method would be applicable in cases where the two data sets

to be merged did not overlap in time, so long as there was a

higher-resolution data set that bridged between them. Also,

this method allows for quantification of the error incurred

by the approximation of the SSU weighting functions by the

AMSU weighting functions.

MIPAS was found to track the three SSU channels and

the six AMSU channels very well in time, especially in their

seasonal cycle. This provides well-defined relative biases be-

tween MIPAS and the two nadir instruments, allowing for

the merging of the two nadir records to be performed with

confidence. In particular, the standard deviation of the dif-

ferences during the overlap period is less than 0.1 K for all

three SSU channels, which is much less than the dynamic

range of the time series. Thus, uncertainties in the merging

make only a very small contribution to the uncertainties in

the long-term changes. The relative bias that results from im-

perfect approximation of the SSU weighting functions by the

AMSU weighting functions is a significant contributor to the

overall relative bias for SSU channels 1 and 2, and the domi-

nant contributor for channel 3. Although the relative bias for

channel 3 seems stable over the overlap period (e.g. the cor-

relation coefficient between SSU channel 3 and the AMSU-

simulated channel 3 is 0.895), it does introduce a potential

systematic uncertainty into the extension of SSU channel 3

into the future using AMSU.

The coefficients βm and relative biases cn developed here

can be used to continuously extend the NOAA version 2 SSU

record forward in time using AMSU, as the AMSU record

lengthens.

The near-global-mean linear temperature trends for the

extended SSU data set for 1980–2012 are −0.63± 0.13,

−0.71± 0.15 and−0.80± 0.17 K decade−1 for channels 1, 2

and 3, respectively. These trends are in agreement with those

from CMIP5 model simulations over this period.

Because global-mean temperature exhibits relatively little

interannual variability, compared to the temperature in par-

ticular latitude bands, trends can be determined with confi-

dence even over relatively short records. We analyse trends

over the period 2004–2012 when data from a second ver-

tically resolved temperature data set, Aura MLS, are avail-

able. While MLS temperature trends are essentially identi-

cal to those of AMSU, the current version of MIPAS data

shows a cooling trend relative to AMSU, which is in agree-

ment with preceding drift analyses (Eckert, 2012). This does

not compromise the use of MIPAS as a transfer function be-

tween SSU and AMSU, because the relative biases are com-

puted for a particular period, nor for the use of MIPAS data

to examine seasonal cycles and interannual variability. How-

ever, this version of MIPAS temperature should not be used

to determine long-term trends. On the other hand, the high

level of agreement between MLS and AMSU provides con-

fidence in both data sets for trend analysis. Over the 2004–

2012 period these data show a statistically significant cool-

ing ranging from ∼ 0.6± 0.3 K decade−1 for channel 14 to

∼ 0.3± 0.2 K decade−1 for channel 12, and no statistically

significant change for the three lowest channels 9, 10 and 11.

It is worth noting that even the narrower weighting func-

tions that characterize the AMSU channels, relative to the

deeper weighting functions of the SSU channels, strongly

smooth the vertical structure seen in the MLS trends. Thus,

nadir measurements should never be compared with profile

trends derived from higher-vertical-resolution instruments or

models; the latter must always be first filtered through the

weighting functions of the nadir measurements.

The long-term stratospheric near-global-mean temperature

record since 1979, which is represented by the SSU chan-

nels, exhibits considerable temporal structure associated with

cooling from increasing CO2 and from ODS-induced ozone

depletion, the effects of the solar cycle, and warming from

volcanic eruptions. Version 2 of the NOAA SSU record is

found to be consistent with the behaviour seen in model sim-

ulations. This is in contrast to the findings of Thompson et

al. (2012), who examined version 1 of those data. In par-

ticular, the (extended) SSU record and the CCMVal2 mod-

els show the same contrast in cooling trends between the

ozone depletion and recovery periods, with weak cooling

over 1995–2004 compared with the large cooling seen in the

period 1986–1995 of strong ozone depletion. The extended

SSU data show a continued cooling beyond the end of the

SSU record, with a small warming in the last few years (up

to 2011) which is presumably associated with the solar cy-

cle. Both features are consistent with the high-top CMIP5

models. Thus, the extended SSU global-mean temperature

record constructed here, which covers 1979–2012, is consis-

tent with physical expectations of the vertical structure and

temporal variations in the rates of stratospheric cooling over

this period.
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