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Abstract

We deduce an asymptotic formula with error term for the sum∑
n1,...,nk≤x f([n1, . . . , nk]), where [n1, . . . , nk] stands for the least common

multiple of the positive integers n1, . . . , nk (k ≥ 2) and f belongs to a
large class of multiplicative arithmetic functions, including, among others,
the functions f(n) = nr, ϕ(n)r, σ(n)r (r > −1 real), where ϕ is Euler’s
totient function and σ is the sum-of-divisors function. The proof is by ele-
mentary arguments, using the extension of the convolution method for arith-
metic functions of several variables, starting with the observation that given
a multiplicative function f , the function of k variables f([n1, . . . , nk]) is mul-
tiplicative.

Keywords: greatest common divisor, least common multiple, arithmetic
function of several variables, multiplicative function, Dirichlet series,
asymptotic formula
2000 MSC: 11A05, 11A25, 11N37

1. Introduction

We use the following notation: N = {1, 2, . . .}, ∗ is the Dirichlet convolu-
tion of arithmetic functions, idr (r ∈ R) is the function idr(n) = nr (n ∈ N),
1 = id0, id = id1, µ denotes the Möbius function, λ is the Liouville function,
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σr = 1 ∗ idr, σ = σ1 is the sum-of-divisors function, τ = σ0 is the divisor
function, βr = λ ∗ idr, β = β1 is the alternating sum-of-divisors function
(cf. [19]), ϕr = µ ∗ idr is the generalized Euler function, ϕ = ϕ1 is Euler’s
totient function, ψr = µ2 ∗ idr is the generalized Dedekind function, ψ = ψ1

is the classical Dedekind function. If n ∈ N, then n =
∏

p p
νp(n) is its prime

power factorization, the product being over the primes p, where all but a
finite number of the exponents νp(n) are zero.

Furthermore, let (n1, . . . , nk) and [n1, . . . , nk] denote the greatest common
divisor (gcd) and the least common multiple (lcm) of n1, . . . , nk ∈ N (k ≥ 2),
respectively.

It is easy to see that for any arithmetic function f we have the identity∑
n1,...,nk≤x

f((n1, . . . , nk)) =
∑
d≤x

(µ ∗ f)(d)
⌊x
d

⌋k
, (1)

which leads to asymptotic formulas for this sum. For example, if f = id and
k ≥ 3, then we have∑

n1,...,nk≤x

(n1, . . . , nk) =
ζ(k − 1)

ζ(k)
xk +O(Rk(x)), (2)

where R3(x) = x2 log x and Rk(x) = xk−1 for k ≥ 4. The case f = id, k = 2
can be treated separately by writing∑

m,n≤x

(m,n) = 2
∑

m≤n≤x

(m,n)−
∑
n≤x

n

= 2
∑
n≤x

(µ ∗ id τ)(n)− x2

2
+O(x),

giving, by using elementary arguments, the formula∑
m,n≤x

(m,n) =
x2

ζ(2)

(
log x+ 2γ − 1

2
− ζ(2)

2
− ζ ′(2)

ζ(2)

)
+O(x1+θ+ε), (3)

valid for every ε > 0, where γ is Euler’s constant and θ is the exponent
appearing in Dirichlet’s divisor problem.

For the lcm of k positive integers there is no formula similar to (1). How-
ever, in the case k = 2, the lcm of the integers m,n ∈ N can be written using

2



their gcd as [m,n] = mn/(m,n), which enables to establish the following
asymptotic formula, valid for any positive real number r:∑

m,n≤x

[m,n]r =
ζ(r + 2)

ζ(2)
· x

2(r+1)

(r + 1)2
+O(x2r+1 log x). (4)

If r ∈ N, then the error term in (4) can be improved into
O(x2r+1(log x)2/3(log log x)4/3), which is a consequence of the result of Walfisz
[23, Satz 1, p. 144] for

∑
n≤x ϕ(n).

For k = 2 the asymptotic formulas concerning
∑

m,n≤x(m,n)r and∑
m,n≤x[m,n]r are equivalent to those for

∑
n≤x gr(n) and

∑
n≤x `r(n), re-

spectively, where gr(n) =
∑

1≤j≤n(j, n)r is the gcd-sum function and `r(n) =∑
1≤j≤n[j, n]r is the lcm-sum function. The function g1(n) =

∑
1≤j≤n(j, n),

investigated by S. S. Pillai [16], is also called Pillai’s function in the literature.
The above and related results go back, in chronological order, to the work

of E. Cesàro [6], E. Cohen [9, 10, 11], K. Alladi [1], P. Diaconis and P. Erdős
[12], J. Chidambaraswamy and R. Sitaramachandrarao [7], K. A. Broughan
[5], O. Bordellès [2, 3, 4], Y. Tanigawa and W. Zhai [17], S. Ikeda and K. Mat-
suoka [15], and others.

For example, formula (3) with the weaker error O(x3/2 log x) was given
in [12, Th. 2, Eq. (1.4)] and was recovered in [5, Th. 4.7]. Formula (3) with
the above error term was established in [7, Th. 3.1] and recovered in [2, Th.
1.1] (in both papers for Pillai’s function). Formula (4) was established in
[12, Th. 2, Eq. (1.6)]. The better error term for (4) in the case r ∈ N was
obtained in [15, Th. 2]. Asymptotic formulas for (1) in the case k = 2 and for
various choices of the function f , including f = σ and f = ϕ were deduced
in [4, 9, 10, 11]. See also the survey paper [18].

The result ∑
m,n,q≤x

[m,n, q]r ∼ cr
x3(r+1)

(r + 1)3
(x→∞),

valid for r ∈ N, without any error term and with a computable constant cr
given in an implicit form, was obtained by J. L. Fernández and P. Fernández
[13, Th. 3(b)]. Their proof is by an ingenious method based on the identity
[m,n, q](m,n)(m, q)(n, q) = mnq(m,n, q) (m,n, q ∈ N) and using the domi-
nated convergence theorem. As far as we know, there are no other asymptotic
results in the literature for the sum∑

n1,...,nk≤x

f([n1, . . . , nk]), (5)
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in the case k ≥ 3, where f is an arithmetic function. It seems that the
method of [13] can not be extended for k ≥ 3, even in the case f = idr. Also,
it is not possible to reduce the estimation of the sum (5) to sums of a single
variable, like in (1).

In this paper we deduce an asymptotic formula with remainder term for
the sum (5), where k ≥ 2 and f belongs to a large class of multiplicative
arithmetic functions, including the functions idr with r > −1 real and σr,
βr, ϕr, ψr with r ≥ 1/2 real. The proof is by elementary arguments, using
the extension of the convolution method for arithmetic functions of several
variables starting with the observation that given a multiplicative function f ,
the function of k variables f([n1, . . . , nk]) is multiplicative and the associated
multiple Dirichlet series factorizes as an Euler product. The same method
was used by the second author [21] for a different problem. See the survey
paper [20] of the second author for basic properties of multiplicative functions
of several variables and related convolutions.

We also extend to the k dimensional case the formula∑
m,n≤x

[m,n]

(m,n)
=
π2

60
x4 +O(x3 log x), (6)

which can be obtained in a similar manner to the results (2) and (4). Prop-
erties of the operation m ◦ n = [m,n]/(m,n) were investigated by the first
author [14].

Note that the following recent result of different type, concerning the lcm
of several positive integers, was obtained by J. Cilleruelo, J. Rué, P. S̆arka
and A. Zumalacárregui [8]: lcm{a : a ∈ A} = 2n(1+o(1)) for almost all subsets
A ⊂ {1, . . . , n}.

2. Main results

Let r ∈ R be a fixed number. Let Ar denote the class of complex valued
multiplicative arithmetic functions satisfying the following properties: there
exist real constants C1, C2 such that

|f(p)− pr| ≤ C1p
r−1/2 for every prime p, (i)

and
|f(pν)| ≤ C2p

νr for every prime power pν with ν ≥ 2. (ii)
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Note that conditions (i) and (ii) imply that

|f(pν)| ≤ C3p
νr for every prime power pν with ν ≥ 1, (iii)

where C3 = max(C1 + 1, C2).
Observe that idr ∈ Ar for every r ∈ R, while σr, βr, ϕr, ψr ∈ Ar for every

r ∈ R with r ≥ 1/2. The functions f(n) = σ(n)r, β(n)r, ϕ(n)r, ψ(n)r also
belong to the class Ar for every r ∈ R. As other examples of functions in the
class Ar, with r ∈ R, we mention ϕ∗(n)r, σ∗(n)r and σ(e)(n)r, where ϕ∗(n) =∏

p|n
(
pνp(n) − 1

)
is the unitary Euler totient, σ∗(n) =

∏
p|n
(
pνp(n) + 1

)
is

the sum-of-unitary-divisors function and σ(e)(n) =
∏

p|n
∑

d|νp(n) p
d denotes

the sum of exponential divisors of n. Furthermore, if f is a bounded mul-
tiplicative function such that f(p) = 1 for every prime p, then f ∈ A0. In
particular, µ2 ∈ A0.

We prove the following results.

Theorem 2.1. Let k ≥ 2 be a fixed integer and let f ∈ Ar be a function,
where r > −1 is real. Then for every ε > 0,∑

n1,...,nk≤x

f([n1, . . . , nk]) = Cf,k
xk(r+1)

(r + 1)k
+O

(
xk(r+1)− 1

2
min(r+1,1)+ε

)
, (7)

and ∑
n1,...,nk≤x

f([n1, . . . , nk])

(n1 · · ·nk)r
= Cf,kx

k +O
(
xk−

1
2
min(r+1,1)+ε

)
, (8)

where

Cf,k =
∏
p

(
1− 1

p

)k ∞∑
ν1,...,νk=0

f(pmax(ν1,...,νk))

p(r+1)(ν1+···+νk)
.

Formula (7) shows that the average order of f([n1, . . . , nk]) is Cf,k(n1 · · ·nk)r,
in the sense that∑

n1,...,nk≤x

f([n1, . . . , nk]) ∼
∑

n1,...,nk≤x

Cf,k(n1 · · ·nk)r (x→∞).

From (8) we deduce that

lim
x→∞

1

xk

∑
n1,...,nk≤x

f([n1, . . . , nk])

(n1 · · ·nk)r
= Cf,k,
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representing the mean value of the function f([n1, . . . , nk])/(n1 · · ·nk)r. See
N. Ushiroya [22, Th. 4] and the second author [20, Prop. 19] for general results
on mean values of multiplicative arithmetic functions of several variables.

Theorem 2.2. Let k ≥ 2 be a fixed integer and let f ∈ Ar be a function,
where r ≥ 0 is real. Then for every ε > 0,∑

n1,...,nk≤x

f

(
[n1, . . . , nk]

(n1, . . . , nk)

)
= Df,k

xk(r+1)

(r + 1)k
+O

(
xk(r+1)− 1

2
+ε
)
, (9)

where

Df,k =
∏
p

(
1− 1

p

)k ∞∑
ν1,...,νk=0

f(pmax(ν1,...,νk)−min(ν1,...,νk))

p(r+1)(ν1+···+νk)
.

In the case f = idr we obtain from Theorem 2.1 the next result:

Corollary 1. Let k ≥ 3 and r > −1 be a real number. Then for every ε > 0,∑
n1,...,nk≤x

[n1, . . . , nk]
r = Cr,k

xk(r+1)

(r + 1)k
+O

(
xk(r+1)− 1

2
min(r+1,1)+ε

)
, (10)

and ∑
n1,...,nk≤x

(
[n1, . . . , nk]

n1 · · ·nk

)r
= Cr,kx

k +O
(
xk−

1
2
min(r+1,1)+ε

)
,

where

Cr,k =
∏
p

(
1− 1

p

)k ∞∑
ν1,...,νk=0

prmax(ν1,...,νk)

p(r+1)(ν1+···+νk)
.

In particular,

Cr,3 = ζ(r + 2)ζ(2r + 3)
∏
p

(
1− 3

p2
+

2

p3
+

2

pr+2
− 3

pr+3
+

1

pr+5

)
, (11)

Cr,4 = ζ(r+2)ζ(2r+3)ζ(3r+4)
∏
p

(
1− 6

p2
+

8

p3
− 3

p4
+

5

pr+2
− 12

pr+3
+

6

pr+4
+

4

pr+5

− 3

pr+6
+

3

p2r+3
− 4

p2r+4
− 6

p2r+5
+

12

p2r+6
− 5

p2r+7
+

3

p3r+5
− 8

p3r+6
+

6

p3r+7
− 1

p3r+9

)
.

(12)
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In the case f = idr we deduce from Theorem 2.2:

Corollary 2. Let k ≥ 3 and r > 0 be a real number. Then for every ε > 0,

∑
n1,...,nk≤x

(
[n1, . . . , nk]

(n1, . . . , nk)

)r
= Dr,k

xk(r+1)

(r + 1)k
+O

(
xk(r+1)− 1

2
+ε
)
, (13)

where

Dr,k =
∏
p

(
1− 1

p

)k ∞∑
ν1,...,νk=0

pr(max(ν1,...,νk)−min(ν1,...,νk))

p(r+1)(ν1+···+νk)
.

In particular,

Dr,3 = Cr,3
ζ(3r + 3)

ζ(2r + 3)
, Dr,4 = Cr,4

ζ(4r + 4)

ζ(3r + 4)
.

We remark that in the case k = 2 asymptotic formulas (10) and (13)
reduce to (4) and (6) (case r = 1), respectively, but the latter ones have
better error terms. Note that Dr,2 = ζ(2r + 2)/ζ(2).

Among other special cases we consider the functions σ, ϕ ∈ A1 and µ2 ∈
A0.

Corollary 3. Let k ≥ 2. Then for every ε > 0,∑
n1,...,nk≤x

σ([n1, . . . , nk]) = Cσ,k
x2k

2k
+O

(
x2k−1/2+ε

)
,

and ∑
n1,...,nk≤x

σ([n1, . . . , nk])

n1 · · ·nk
= Cσ,kx

k +O
(
xk−1/2+ε

)
,

where

Cσ,k =
∏
p

(
1− 1

p

)k ∞∑
ν1,...,νk=0

σ(pmax(ν1,...,νk))

p2(ν1+···+νk)
.

In particular,

Cσ,2 = ζ(3)ζ(4)
∏
p

(
1 +

1

p2
− 2

p3
− 2

p5
+

2

p6

)
.
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Corollary 4. Let k ≥ 2. Then for every ε > 0,∑
n1,...,nk≤x

ϕ([n1, . . . , nk]) = Cϕ,k
x2k

2k
+O

(
x2k−1/2+ε

)
,

and ∑
n1,...,nk≤x

ϕ([n1, . . . , nk])

n1 · · ·nk
= Cϕ,kx

k +O
(
xk−1/2+ε

)
,

where

Cϕ,k =
∏
p

(
1− 1

p

)k ∞∑
ν1,...,νk=0

ϕ(pmax(ν1,...,νk))

p2(ν1+···+νk)
.

In particular,

Cϕ,2 = ζ(3)
∏
p

(
1− 3

p2
+

2

p3
− 1

p4
+

2

p5
− 1

p6

)
.

Corollary 5. Let k ≥ 2. Then for every ε > 0,∑
n1,...,nk≤x

µ2([n1, . . . , nk]) =
xk

ζ(2)k
+O

(
xk−1/2+ε

)
.

Remark 1. It would be interesting to find the best possible error, especially
in particular cases. For example, for r = 1 in Corollary 1, the relative error
is O(x−1/2+ε). Can we improve the exponent further and if so, by how much?

3. Proofs

An arithmetic function g of k variables is called multiplicative if

g(m1n1, . . . ,mknk) = g(m1, . . . ,mk)g(n1, . . . , nk),

provided that (m1 · · ·mk, n1 · · ·nk) = 1. Hence

g(n1, . . . , nk) =
∏
p

g
(
pνp(n1), . . . , pνp(nk)

)
for every n1, . . . , nk ∈ N. In this case the multiple Dirichlet series of the
function g can be expanded into an Euler product:

∞∑
n1,...,nk=1

g(n1, . . . , nk)

nz11 · · ·n
zk
k

=
∏
p

∞∑
ν1,...,νk=0

g(pν1 , . . . , pνk)

pν1z1+···+νkzk
.

We need the following lemmas.

8



Lemma 3.1. If k ≥ 2 and f ∈ Ar with r > −1 real, then

Lf,k(z1, . . . , zk) :=
∞∑

n1,...,nk=1

f([n1, . . . , nk])

nz11 · · ·n
zk
k

= ζ(z1−r) · · · ζ(zk−r)Hf,k(z1, . . . , zk),

where the multiple Dirichlet series Hf,k(z1, . . . , zk) is absolutely convergent
for

<z1, . . . ,<zk > A :=

{
r + 1

2
, if r ≥ 0,

r+1
2
, if −1 < r < 0.

(14)

Proof. If f is a multiplicative function of a single variable, then the arithmetic
function of k variables f([n1, . . . , nk]) is multiplicative. It follows that

Lf,k(z1, . . . , zk) =
∏
p

∞∑
ν1,...,νk=0

f(pmax(ν1,...,νk))

pν1z1+···+νkzk
(15)

Case I. Assume that r ≥ 0. Grouping the terms of the sum in (15)
according to the values ν1 + · · ·+ νk we have

Lf,k(z1, . . . , zk) =
∏
p

(
1 +

f(p)

pz1
+ · · ·+ f(p)

pzk
+

∑
ν1+···+νk≥2

f(pmax(ν1,...,νk))

pν1z1+···+νkzk

)
.

(16)
Let <z1, . . . ,<zk ≥ δ > r. By using condition (i) from the definition of

the class Ar,

f(p)

pzj
=

1

pzj−r
+O

(
1

pδ−r+1/2

)
(1 ≤ j ≤ k).

Also, by condition (iii) following the definition of the class Ar and by
using that r ≥ 0 we deduce that∣∣∣∣f(pmax(ν1,...,νk))

pν1z1+···+νkzk

∣∣∣∣ ≤ C3
prmax(ν1,...,νk)

pδ(ν1+···+νk)
≤ C3

1

p(δ−r)(ν1+···+νk)
.

Thus the sum in (16) over ν1 + · · ·+ νk ≥ 2 is O
(
p−2(δ−r)

)
. We obtain

Lf,k(z1, . . . , zk)ζ
−1(z1 − r) · · · ζ−1(zk − r)

=
∏
p

(
1− 1

pz1−r

)
· · ·
(

1− 1

pzk−r

)(
1 +

1

pz1−r
+ · · ·+ 1

pzk−r
+O

(
1

pδ−r+1/2

)
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+O

(
1

p2(δ−r)

))
=
∏
p

(
1 +O

(
1

pδ−r+1/2

)
+O

(
1

p2(δ−r)

))
,

since <zj ≥ δ (1 ≤ j ≤ k), where the terms ± 1

pzj−r (1 ≤ j ≤ k) cancel

out. Here the latter product converges absolutely when δ − r + 1/2 > 1 and
2(δ − r) > 1, that is, for δ > r + 1/2.

Case II. Assume that −1 < r < 0. Now we group the terms of the sum
in (15) according to the values max(ν1, . . . , νk):

Lf,k(z1, . . . , zk) =
∏
p

1 +
∑

max(ν1,...,νk)=1

f(p)

pν1z1+···+νkzk
+

∑
max(ν1,...,νk)≥2

f(pmax(ν1,...,νk))

pν1z1+···+νkzk

 .

(17)
Let <z1, . . . ,<zk ≥ δ ≥ 0. Consider the sum in (17) over max(ν1, . . . , νk) =

1 and suppose that νi = 1 for m (1 ≤ m ≤ k) distinct values of i. If m = 1,
then by condition (i) from the definition of the class Ar we have

f(p)

pzj
=

1

pzj−r
+O

(
1

pδ−r+1/2

)
(1 ≤ j ≤ k).

If m ≥ 2, then∣∣∣∣ f(p)

pν1z1+···+νkzk

∣∣∣∣ ≤ (C1 + 1)pr

pmδ
= O

(
1

p2δ−r

)
.

This shows that the sum in (17) over max(ν1, . . . , νk) = 1 is

1

pz1−r
+ · · ·+ 1

pzk−r
+O

(
1

pδ−r+1/2

)
+O

(
1

p2δ−r

)
.

Furthermore, by condition (ii) we deduce that for max(ν1, . . . , νk) ≥ 2,∣∣∣∣f(pmax(ν1,...,νk))

pν1z1+···+νkzk

∣∣∣∣ ≤ C2
prmax(ν1,...,νk)

pδ(ν1+···+νk)
≤ C2

1

p(δ−r)max(ν1,...,νk)

(δ ≥ 0) and it follows that the sum in (17) over max(ν1, . . . , νk) ≥ 2 is
O
(
p−2(δ−r)

)
= O

(
p−(2δ−r)

)
, since r < 0.

We obtain that

Lf,k(z1, . . . , zk) =
∏
p

(
1 +

1

pz1−r
+ · · ·+ 1

pzk−r
+O

(
1

pδ−r+1/2

)
+O

(
1

p2δ−r

))
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and
Lf,k(z1, . . . , zk)ζ

−1(z1 − r) · · · ζ−1(zk − r)

=
∏
p

(
1− 1

pz1−r

)
· · ·
(

1− 1

pzk−r

)∏
p

(
1 +

1

pz1−r
+ · · ·+ 1

pzk−r

+O

(
1

pδ−r+1/2

)
+O

(
1

p2δ−r

))
=
∏
p

(
1 +O

(
1

pδ−r+1/2

)
+O

(
1

p2δ−r

))
,

since <zj ≥ δ (1 ≤ j ≤ k), where the terms ± 1

pzj−r (1 ≤ j ≤ k) cancel

out, similar to Case I. Here the latter product converges absolutely when
δ − r + 1/2 > 1 and 2δ − r > 1, that is, for δ > (r + 1)/2 > 0.

Lemma 3.2. If k ≥ 2 and f ∈ Ar with r ≥ 0, then

Lf,k(z1, . . . , zk) :=
∞∑

n1,...,nk=1

f
(

[n1,...,nk]
(n1,...,nk)

)
nz11 · · ·n

zk
k

= ζ(z1−r) · · · ζ(zk−r)Hf,k(z1, . . . , zk),

where the multiple Dirichlet series Hf,k(z1, . . . , zk) is absolutely convergent
for <z1, . . . ,<zk > r + 1/2.

Proof. Similar to the proof of Lemma 3.1, Case I. If f is multiplicative, then
the function f([n1, . . . , nk]/(n1, . . . , nk)) is also multiplicative and we have

Lf,k(z1, . . . , zk) =
∏
p

∞∑
ν1,...,νk=0

f(pmax(ν1,...,νk)−min(ν1,...,νk))

pν1z1+···+νkzk

=
∏
p

(
1 +

f(p)

pz1
+ · · ·+ f(p)

pzk
+

∑
ν1+···+νk≥2

f(pmax(ν1,...,νk)−min(ν1,...,νk))

pν1z1+···+νkzk

)
.

(18)
If <z1, . . . ,<zk ≥ δ > r, then it follows that∣∣∣∣f(pmax(ν1,...,νk)−min(ν1,...,νk))

pν1z1+···+νkzk

∣∣∣∣ ≤ C
pr(max(ν1,...,νk)−min(ν1,...,νk))

pδ(ν1+···+νk)
≤ C

1

p(δ−r)(ν1+···+νk)
,

thus the sum in (18) over ν1 + · · ·+ νk ≥ 2 is O
(
p−2(δ−r)

)
. Furthermore, we

use the same arguments as in the previous proof.
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Proof of Theorem 2.1. From Lemma 3.1 we deduce the convolutional identity

f([n1, . . . , nk]) =
∑

j1d1=n1,...,jkdk=nk

jr1 · · · jrkhf,k(d1, . . . , dk),

where
∞∑

n1,...,nk=1

hf,k(n1, . . . , nk)

nz11 · · ·n
zk
k

= Hf,k(z1, . . . , zk).

Therefore∑
n1,...,nk≤x

f([n1, . . . , nk]) =
∑

j1d1≤x,...,jkdk≤x

jr1 · · · jrkhf,k(d1, . . . , dk)

=
∑

d1,...,dk≤x

hf,k(d1, . . . , dk)
∑

j1≤x/d1

jr1 · · ·
∑

jk≤x/dk

jrk

=
∑

d1,...,dk≤x

hf,k(d1, . . . , dk)

(
xr+1

(r + 1)dr+1
1

+O(
xR

dR1
)

)
· · ·
(

xr+1

(r + 1)dr+1
k

+O(
xR

dRk
)

)
,

where R := max(r, 0). We deduce that

∑
n1,...,nk≤x

f([n1, . . . , nk]) =
xk(r+1)

(r + 1)k

∑
d1,...,dk≤x

hf,k(d1, . . . , dk)

dr+1
1 · · · dr+1

k

+ Sk,r(x), (19)

with

Sk,r(x)�
∑

u1,...,uk

xu1+···+uk
∑

d1,...,dk≤x

|hf,k(d1, . . . , dk)|
du11 · · · d

uk
k

, (20)

where the first sum is over u1, . . . , uk ∈ {r + 1, R} such that at least one ui
is R. Let u1, . . . , uk be fixed and assume that ui = R for t (1 ≤ t ≤ k) values
of i, we take the first t values of i. Then xu1+···+uk times the inner sum of
(20) is, using the notation A given by (14),

� x(k−t)(r+1)+tR
∑

d1,...,dk≤x

|hf,k(d1, . . . , dk)|
dR1 · · · dRt dr+1

t+1 · · · dr+1
k

= x(k−t)(r+1)+tR
∑

d1,...,dk≤x

|hf,k(d1, . . . , dk)|dA−R+ε
1 · · · dA−R+ε

t

dA+ε1 · · · dA+εt dr+1
t+1 · · · dr+1

k

12



≤ x(k−t)(r+1)+tRxt(A−R+ε)

∞∑
d1,...,dk=1

|hf,k(d1, . . . , dk)|
dA+ε1 · · · dA+εt dr+1

t+1 · · · dr+1
k

= xk(r+1)−t(r+1−A)+tεHf,k(A+ ε, . . . , A+ ε, r + 1, . . . , r + 1)

� xk(r+1)−t(r+1−A)+tε,

since the latter series is convergent by Lemma 3.1. Using that r + 1 − A =
1
2

min(r + 1, 1) > 0, the obtained error is maximal for t = 1 giving

O
(
xk(r+1)− 1

2
min(r+1,1)+ε

)
.

Furthermore, for the sum in the main term of (19) we have∑
d1,...,dk≤x

hf,k(d1, . . . , dk)

dr+1
1 · · · dr+1

k

=
∞∑

d1,...,dk=1

hf,k(d1, . . . , dk)

dr+1
1 · · · dr+1

k

−
∑

∅6=I⊆{1,...,k}

∑
di>x, i∈I
dj≤x, j /∈I

hf,k(d1, . . . , dk)

dr+1
1 · · · dr+1

k

, (21)

where the series is convergent by Lemma 3.1, and its sum is Hf,k(r+1, . . . , r+
1).

Let I be fixed and assume that I = {1, 2, . . . , s}, that is d1, . . . , ds > x
and dt+1, . . . , dk ≤ x, where s ≥ 1. We deduce, by noting that A− (r+ 1) =
−1

2
min(r + 1, 1) < 0, ∑

d1,...,ds>x
ds+1,...,dk≤x

|hf,k(d1, . . . , dk)|
dr+1
1 · · · dr+1

k

=
∑

d1,...,ds>x
ds+1,...,dk≤x

|hf,k(d1, . . . , dk)|dA−(r+1)+ε
1 · · · dA−(r+1)+ε

s

dA+ε1 · · · dA+εs dr+1
s+1 · · · dr+1

k

≤ xs(A−(r+1)+ε)

∞∑
d1,...,dk=1

|hf,k(d1, . . . , dk)|
dA+ε1 · · · dA+εs dr+1

s+1 · · · dr+1
k

= xs(A−(r+1)+ε)Hf,k(A+ ε, . . . , A+ ε, r + 1, . . . , r + 1)

� x−
s
2
min(r+1,1)+sε,
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the latter series (the same as before) being convergent, and the obtained
error is maximal for s = 1 giving, according to (19) and (21), the same error

O
(
xk(r+1)− 1

2
min(r+1,1)+ε

)
.

This proves asymptotic formula (7) with the constant Cf,k = Hf,k(r +
1, . . . , r + 1). Here, according to Lemma 3.1,

Cf,k =
∏
p

(
1− 1

p

)k ∞∑
ν1,...,νk=0

f(pmax(ν1,...,νk))

p(r+1)(ν1+···+νk)
.

The proof of (8) is similar, based on Lemma 3.1 and the convolutional
identity

f([n1, . . . , nk])

(n1 · · ·nk)r
=

∑
j1d1=n1,...,jkdk=nk

hf,k(d1, . . . , dk)

dr1 · · · drk
,

which implies that∑
n1,...,nk≤x

f([n1, . . . , nk])

(n1 · · ·nr)r
=

∑
d1,...,dk≤x

hf,k(d1, . . . , dk)

dr1 · · · drk

∑
j1≤x/d1

1 · · ·
∑

jk≤x/dk

1.

Proof of Theorem 2.2. Formula (9) is obtained by using Lemma 3.2, in ex-
actly the same way as (7) (here r ≥ 0 and R = max(r, 0) = r), with the
constant Df,k = Hf,k(r + 1, . . . , r + 1).

Proof of Corollary 1. Apply Theorem 2.1 for f = idr. Here

Cr,3 =
∏
p

(
1− 1

p

)3 ∞∑
a,b,c=0

prmax(a,b,c)

p(r+1)(a+b+c)

=
∏
p

(
1− 1

p

)3

(6S1 + 3S2 + 3S3 + S4) ,

with

S1 =
∑

0≤a<b<c

prc

p(r+1)(a+b+c)
, S2 =

∑
0≤a=b<c

prc

p(r+1)(2a+c)
,

14



S3 =
∑

0≤a<b=c

prc

p(r+1)(a+2c)
, S4 =

∑
0≤a=b=c

prc

p(r+1)3c
,

which gives (11). Formula (12) for the constant Cr,4 can be computed in a
similar manner.

Proof of Corollary 2. Apply Theorem 2.2 for f = idr. The constants Dr,3

and Dr,4 can be evaluated like above.

Proof of Corollaries 3, 4, 5. Apply Theorem 2.1 for f = σ, f = ϕ with r = 1,
resp. f = µ2 with r = 0.
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