
Epidemic failure detection and consensus
for extreme parallelism
Article

Accepted Version

Katti, A., Di Fatta, G., Naughton, T. and Engelmann, C. (2018)
Epidemic failure detection and consensus for extreme
parallelism. International Journal of High Performance
Computing Applications, 32 (5). pp. 729-743. ISSN 1094-3420
doi: 10.1177/1094342017690910 Available at
https://centaur.reading.ac.uk/71175/

It is advisable to refer to the publisher’s version if you intend to cite from the
work. See Guidance on citing .

To link to this article DOI: http://dx.doi.org/10.1177/1094342017690910

Publisher: Sage

All outputs in CentAUR are protected by Intellectual Property Rights law,
including copyright law. Copyright and IPR is retained by the creators or other
copyright holders. Terms and conditions for use of this material are defined in
the End User Agreement .

www.reading.ac.uk/centaur

CentAUR

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://www.reading.ac.uk/centaur
http://centaur.reading.ac.uk/licence

Central Archive at the University of Reading
Reading’s research outputs online

Epidemic Failure Detection and Consensus for

Extreme Parallelism

Amogh Katti∗, Giuseppe Di Fatta†, Thomas Naughton‡

and Christian Engelmann§

March 4, 2017

Abstract

Future extreme-scale high-performance computing systems will be re-
quired to work under frequent component failures. The MPI Forum’s User
Level Failure Mitigation proposal has introduced an operation,
MPI Comm shrink, to synchronize the alive processes on the list of failed
processes, so that applications can continue to execute even in the presence
of failures by adopting algorithm-based fault tolerance techniques. This
MPI Comm shrink operation requires a failure detection and consensus
algorithm. This paper presents three novel failure detection and consensus
algorithms using Gossiping. Stochastic pinging is used to quickly detect
failures during the execution of the algorithm, failures are then dissemi-
nated to all the fault-free processes in the system and consensus on the
failures is detected using the three consensus techniques. The proposed
algorithms were implemented and tested using the Extreme-scale Simula-
tor. The results show that the stochastic pinging detects all the failures in
the system. In all the algorithms, the number of Gossip cycles to achieve
global consensus scales logarithmically with system size. The second al-
gorithm also shows better scalability in terms of memory and network
bandwidth usage and a perfect synchronization in achieving global con-
sensus. The third approach is a three-phase distributed failure detection
and consensus algorithm and provides consistency guarantees even in very
large and extreme-scale systems while at the same time being memory and
bandwidth efficient.

Keywords:
Fault-tolerant MPI, User-level failure mitigation, Failure detection, Consensus,
Gossip protocols

∗Department of Computer Science, University of Reading, Reading, RG6 6AY, UK.
a.p.katti@reading.ac.uk

†Department of Computer Science, University of Reading, Reading, RG6 6AY, UK.
G.DiFatta@reading.ac.uk

‡Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge,
TN 37831-6173, USA. naughtont@ornl.gov

§Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge,
TN 37831-6173, USA. engelmannc@ornl.gov

1

1 Introduction

Resilience [12] is a critical challenge as high-performance computing (HPC) sys-
tems continue to increase component counts, individual component reliability
decreases (due to shrinking process technology [2] and near-threshold voltage op-
eration [19]), and software complexity increases [28]. In spite of frequent faults,
errors and failures, parallel application correctness and execution efficiency are
essential to ensure the success of extreme-scale HPC systems.

As cost constraints limit resilience mitigation in hardware, a cooperative ap-
proach between hardware and software is needed to efficiently mitigate faults,
errors, and failures at the appropriate layer. However, application-level check-
point/restart has been the dominant HPC fault tolerance method for decades.
Every detectable uncorrectable error results in a complete application abort and
restart from previously saved checkpoint state, even if the error could have been
more efficiently handled by the application, e.g., using forward error correction
with erasure codes [17].

Algorithm-based fault tolerance (ABFT) [15, 17, 21] may be able to deal
with loss of application state, such as caused by a failing compute process or
node, more efficiently through reconfiguration and adaptation without the need
for a more drastic recovery measure, such as a global rollback. The employed
fault tolerance techniques by the application may include error correction using
data redundancy or encoding, and re-execution using local checkpoints.

The Message Passing Interface (MPI) is the dominant parallel programming
interface for facilitating communication between compute processes in HPC. De-
spite its popularity, MPI is not fault tolerant. Recent efforts in MPI fault toler-
ance focused on user-level failure mitigation (ULFM) [3]. The proposed ULFM
extensions to the MPI standard enable applications to be notified of MPI process
failures, to create a new MPI communicator object that excludes known failed
MPI processes from further communication using the MPI Comm shrink() op-
eration, and to achieve a uniform agreement on a value among the non-failed
MPI processes using the MPI Comm agree() operation.

This paper particularly focuses on the implementation of the proposed
MPI Comm shrink() operation and its need to perform an agreement on the
group of failed MPI processes among the non-failed MPI processes, even while
MPI process failures occur. More precisely, the new MPI communicator object
created by the collective MPI Comm shrink() operation contains a consistent
group of MPI processes at every participating MPI process that excludes at least
every failed MPI process that has previously raised a failure notification to the
application. MPI processes that fail during the MPI Comm shrink() operation
may be excluded as well, but consistently at every participating MPI process.

According to the ULFM proposal, only fail-stop process failures are consid-
ered; when a process fails, it stops communicating with the rest of the processes.
The method of failure detection is not defined. However, the ULFM proposal
specifies that an operation involving a failed MPI process must always complete
in a finite amount of time. If an operation does not involve a failed MPI process,
it must not raise a MPI process failure exception. This provides implementers

2

with different options for failure detection. For example, a correct MPI im-
plementation may provide failure detection only for MPI processes involved in
an ongoing operation and may postpone detection of other failures until nec-
essary. The knowledge about detected failed MPI processes is local and only
constructed as globally consistent state in the form of a new MPI communicator
object using the MPI Comm shrink() operation, thus requiring a fault-tolerant
consensus algorithm to uniformly agree on the group of failed MPI processes.

This work investigates the use of Gossip-based protocols to detect fail-
ures and disseminate this information in a consistent manner to support the
MPI Comm shrink() operation. The proposed consensus algorithms can also
be used to support the MPI Comm agree() operation.

Epidemic (or Gossip-based) protocols are a robust and scalable communica-
tion paradigm to disseminate information in a large-scale distributed environ-
ment using randomized communication. They have the advantage of inherent
robustness and scalability with respect to global communication schemes based
on deterministic communication patterns. Applications and services based on
Gossip-based protocols for large- and extreme-scale systems have been proposed
in many fields of distributed computing. Recently, Gossip-based protocols have
also been applied in the context of HPC [29, 30, 1].

In the paper [18], two Gossip based failure detection and consensus algo-
rithms using randomized pinging were developed and tested by means of sim-
ulations. Stochastic pinging is used to quickly detect failures and disseminate
them to fault-free processes during Gossip. The first algorithm stores the system
view in a matrix at each process to facilitate consensus detection. It detects fail-
ures before and during the execution of the algorithm and is hence completely
fault tolerant. The second algorithm detects consensus on the failed processes
using a heuristic method based on a list of failed processes, thus improving the
memory scalability with respect to the first algorithm. It also transfers less Gos-
sip data as only the list of failed processes is sent and hence consumes negligible
network bandwidth. This paper complements and extends the work in [18] by
adding a third algorithm. The third algorithm presented in this paper is anal-
ogous to the three-phase commit [27] protocol but it is completely distributed.
It accurately detects consensus on the failures using a Gossip-based aggregation
protocol while still maintaining only the list of failed processes. Thus it also
has the high memory scalability and consumes less network bandwidth than
the first algorithm. For all algorithms, the number of Gossip cycles to detect
consensus scales logarithmically with the system size.

The paper is structured as follows. Section 2 details the proposed Gossip-
based failure detection and consensus algorithms, where Section 2.1 focuses on
failure detection using stochastic pinging, Section 2.2 on achieving consensus us-
ing global knowledge and a deterministic consensus detection method, and Sec-
tion 2.3 on achieving consensus using a heuristic consensus detection method.
Section 3 introduces the three-phase consensus detection method on the oc-
curred failures. Section 4 discusses the algorithms’ performance and presents
experimental results. Section 5 discusses related work. Section 6 concludes the
paper with a summary and a discussion of future work.

3

2 Gossip-based Failure Detection and Consen-
sus

The MPI Comm shrink() operation must implement a consensus algorithm that
achieves agreement on the set of failed MPI processes that have previously raised
a failure notification, i.e., on the group of known failed MPI processes at each
participating MPI process at the start of the operation. MPI process failures
that occur during the operation will eventually be detected and corresponding
failure notifications will be raised during successive MPI communication oper-
ations. To avoid coarse-grain iterative agreement on the group of failed MPI
processes with successive calls to MPI Comm shrink() by an application, the
consensus algorithm may additionally include an agreement on the group of
MPI processes that fail during the MPI Comm shrink() operation, i.e., during
the consensus algorithm.

In both cases, the consensus algorithm needs to be fault tolerant, i.e., deal
with already known or newly detected MPI process failures. Also, in both cases,
a complete failure detector is implemented that detects fail-stop MPI process
failures by combining failure detection and consensus. Every MPI process inde-
pendently detects MPI process failures. Consensus on the failed MPI processes
is then achieved by aggregating these MPI process failure detections with the
help of a consensus algorithm.

A straightforward way to detect MPI process failures during the
MPI Comm shrink() operation is pinging, wherein a process asks another whether
it is alive. A reply indicates a positive response, while a failure notification from
the underlying MPI runtime marks a negative response. The failure detector
in the MPI runtime can be based on a simple communication timeout. In
an alternative method, a process periodically sends a heartbeat message to let
another process know that it is alive. The receiving process monitors the incom-
ing heartbeat messages and marks a process as failed upon a failure notification
from the underlying MPI runtime. The failure detector can be based on a simple
communication timeout for the periodic heartbeat. The work presented in this
paper is based on pinging for failure detection during the MPI Comm shrink()
operation.

The consensus during the MPI Comm shrink() operation involves all fault-
free processes agreeing on the group of failed processes. In general, a solu-
tion to the consensus problem exists only in certain environments [31]. For in-
stance, consensus is not possible in completely asynchronous environments [11].
However, in an asynchronous environment, failures can still be detected with
completeness and accuracy, leading to a uniform view of the system at each
process [9], although, group membership may not be agreed upon [8]. In the
context of MPI, the proposed ULFM extensions are based on realistic assump-
tions, such as fail-stop, no recovery, a synchronous model, and only short periods
with exceptionally high MPI process failure rates.

This paper presents three scalable failure detection and consensus algorithms
for MPI Comm shrink() based on Uniform Gossiping. The Gossip messages are

4

implicitly used to implement stochastic failure detection. Consensus is achieved
and detected by maintaining the system state in a matrix or by maintaining
a failed process list at each process. Gossip messages carry failure information
with them and disseminate known failures at exponential speed. When a process
p sends a Gossip message to process q, this process q comes to know about the
failures that were directly detected by p, thus detecting failures indirectly. This
Gossip message from p not only contains the failures directly detected by p,
but also indirectly detected failures through received Gossip messages. These
indirect detections of process p are propagated as well to process q, resulting
in exponential information dissemination. When the failure information of a
process is disseminated to all fault-free processes, consensus on its failure is
reached in a logarithmic number of Gossip cycles (as shown in the experiments
in Section 4).

The proposed failure detection and consensus algorithms work under the
following assumptions.

1. Processes are assumed to be connected by a reliable communication medium.

2. A synchronous system model is assumed, i.e., a non-failed MPI process
responds to a message within a known, finite amount of time.

3. The fail-stop model is assumed, i.e., a failed MPI process stops communi-
cating.

4. Faults are assumed to be permanent, i.e., a failed MPI process does not
recover.

5. A process once detected as failed is detected to have failed by all the
processes eventually.

6. Periods of system stability are assumed, i.e., MPI process failures during
the consensus algorithm will, at some point, stop for a long enough period
to reach consensus.

2.1 Failure Detection using Stochastic Pinging

In this Section, we discuss the MPI process failure detection feature of a
MPI Comm shrink() operation using stochastic pinging as part of a Gossip-
based protocol. Every process independently detects failures by pinging a ran-
dom process periodically. During a Gossip cycle of length TGossip units, a pro-
cess i randomly selects a process j to ping according to a uniform probability
distribution function. If process j replies by the end of the current Gossip cy-
cle, then process i finds it to be alive; failed otherwise. Figure 1 shows the
pseudocode for the algorithm.

During a cycle of Uniform Gossiping, the probability of a process being se-
lected as destination of zero, one or more ping messages follows a binomial distri-
bution and hence places minimum burden on each process in turn increasing the
scalability of failure detection. Ultimately any failed process is quickly detected

5

At process i

At each cycle (every TGossip time units):
1 j = getRandomProcess()
2 send a ping message to j

At event: received a ping message from j:
3 send a reply message to j

At event: timeout without receiving a reply from j:
4 mark j to have failed

Figure 1: Failure detection using pinging

by one or more of the non-failed processes, thus initiating the epidemic exponen-
tial propagation of information to achieve consensus. The adopted Gossip-based
approach can tolerate moderate-to-low message loss rates and delays as it is in-
trinsically fault tolerant.

2.2 Consensus using Global Knowledge

In this Section, we discuss achieving consensus on the set of failed MPI processes
during the MPI Comm shrink() operation by maintaining global knowledge at
each MPI process. As shown in the algorithm of Figure 2 each process p detects
failures by pinging random processes and maintains a fault matrix Fp to store
the status of all processes as believed by it and also by all the other processes.
An entry Fp[i, j] in a process’s fault matrix indicates the status of process j as
detected by process i (1 if detected to have failed; 0 otherwise). The algorithm
can be divided into four logical tasks according to the functions performed:
(1) initialization, (2) failure detection, (3) fault matrix update, and (4) check
for consensus.

Every process initializes with the assumption that every other process in the
system is alive and no other process has yet detected any failures (lines 1-5 of
Figure 2).

To detect failures, every TGossip time units a process p randomly selects a
process q and sends a ping message to it piggybacking the fault matrix Fp (lines
6-7). Sending the entire matrix facilitates the propagation of not only process
p’s detections but also other processes’ detections known to process p, thus
exponentially propagating information. A timeout event is then set to receive
a reply from q during the current Gossip cycle (line 8). An asynchronous reply
follows upon reception of this ping message (lines 20-22). At the expiry of the
current Gossip cycle if a reply message from q has not been received by p, q is
detected (directly) to have failed (line 32).

Upon reception of a Gossip (ping or reply) message at p from r, the local
fault matrix Fp is updated by performing an OR operation of the corresponding
elements in Fr except the row p (lines 23-31 except line 28). The row p in Fp is
updated to include the detections of process r (row r in Fr) and thus performing
indirect failure detections at p (line 28).

6

At process p

Require: TGossip Length of a Gossip cycle,Tout Timeout period

Initialisation:
//Fault Matrix Fp[j, k] where 0 ≤ j, k < n
//Fp[j, k] - status of process k as detected by process j

1 for (j = 0, j < n, j ++)
2 for (k = 0, k < n, k ++)
3 Fp[j, k] = 0
4 endfor
5 endfor

At each cycle (every TGossip time units):
//failure detection using pinging

6 q = getRandomProcess()
7 send a message of type ping to q piggybacking Fp

8 create timeout event Eq =< curr cycle no+ Tout, q >
for receiving reply message from q

9 for (k = 0, k < n, k ++) //check for consensus on k
10 temp = 0
11 for (j = 0, j < n, j ++)
12 if (Fp[j, k]||Fp[p, j])
13 temp = temp+ 1
14 endif
15 endfor

//consensus is reached when all fault-free
//processes have detected the failed process

16 if (temp == n)
17 consensus reached(k)
18 endif
19 endfor

At event: received a message from r piggybacked with Fr:
20 if(message type == ping)
21 send a message of type reply to r piggybacking Fp

22 endif
//merge the fault matrices

23 for (k = 0, k < n, k ++)
24 for (j = 0, j < n, j ++)

//propagation of remote failure detections
25 if(j ̸= p)
26 Fp[j, k] = Fp[j, k]||Fr[j, k]
27 else

//indirect local failure detection
28 Fp[p, k] = Fp[p, k]||Fr[r, k]
29 endif
30 endfor
31 endfor

At event: timeout Eq and no reply message received from q within Tout:
//mark q to have failed (direct failure detection)

32 Fp[p, q] = 1

Figure 2: Failure consensus by global knowledge (algorithm 1)

7

Finally, to check if consensus has been reached on the failure of a process k
at p, a logical OR operation is performed between the corresponding elements
of the kth column of the fault matrix and its pth row. Consensus is reached
when all fault-free processes have detected the faulty one (lines 9-19).

In this algorithm processes have to maintain local knowledge of the entire
system state, with O(n2) memory requirement, in order to check for consen-
sus. Network bandwidth consumption is also high due to the transfer of this
local system state as part of the Gossip. Designing scalable consensus algo-
rithms, which achieve consensus without maintaining global knowledge at each
process and with moderate network utilization, is a challenging task. Previ-
ous work [24] has shown how to detect convergence in epidemic aggregation by
means of heuristic methods, such as comparing local state with a random sam-
ple of remote states or running multiple protocol instances locally. In the next
section a similar heuristic method for consensus detection with a more efficient
memory and bandwidth utilization is presented.

2.3 Efficient Heuristic Consensus

Maintaining a matrix of size n2 elements, where n is the number of processes in
the system, and sending it as part of the Gossiping consumes a lot of memory
and network bandwidth. Storing only the failed processes in a list and sending
the same while Gossiping can avoid this. The algorithm in Figure 3 uses a list
instead of a matrix and detects consensus using an heuristic method.

Each process maintains a fault list Lp to store the failed processes known
to it. An entry in this list is a 2-tuple < r, ccnt >, where r is the rank of the
failed process and ccnt is the consensus count associated with it. ccnt is the
length of an unbroken sequence of pinged processes that have r in their failed
process list. The algorithm can be divided into four logical tasks according to
the functions performed: (1) initialization, (2) failure detection, (3) updating
the fault list and (4) checking for consensus.

Every process starts with the assumption that every other process in the
system is alive and hence has its fault list empty (line 1 of Figure 3).

To detect failures, every TGossip time units a process p randomly selects a
process q and sends a ping message to it, piggybacking the list containing only
the failed process ids Lidp (lines 2-4). A timeout event is then set to receive a
reply from q during the current Gossip cycle (line 5). An asynchronous reply
follows upon reception of this ping message (lines 11-14). At the expiry of the
current Gossip cycle, if a reply message from q has not been received by p, q is
detected to have failed and is added to the fault list with ccnt initialized to 0
(line 16).

Upon reception of a Gossip (ping or reply) message at p from r, the remote
fault list Lr is merged with the local fault list Lp (line 15). This merge operation
includes incrementing the ccnt of an element < r, ccnt > in the local list if r
is also present in the received fault list. The ccnt of the element is reset if the
received fault list does not contain the element < r, ccnt >. If the received fault

8

At process p

Require: TGossip Length of a Gossip cycle, Tout Timeout period

Initialisation:
//Fault list Lp = {< r, ccnt >, ...}

1 Lp ← {}
At each cycle (every TGossip time units):

//failure detection using pinging
2 q = getRandomProcess()
3 extractProcessIds(Lidp, Lp)
4 send a message of type ping to q piggybacking Lidp
5 create timeout event Eq =< curr cycle no+ Tout, q >

for receiving reply message from q
//check for consensus

6 foreach entry < r, ccnt > in Lp

7 if(curr cycle > log(n)) && (ccnt ≥MIN CCNT)
8 consensus reached(r)
9 endif
10 end foreach

At event: received a message from r piggybacked with Lr:
11 if(message type == ping)
12 extractProcessIds(Lidp, Lp)
13 send a message of type reply to r piggybacking Lidp
14 endif

//merge the contents of the two lists and update ccnt of
//each entry (indirect failure detection and propagation)

15 Lp ← merge(Lp, Lr)

At event: timeout Eq and no reply message received from q within Tout:
//mark q to have failed and add it to the list (direct
//failure detection)

16 Lp ← Lp ∪ {< q, 0 >}

Figure 3: Efficient failure consensus (algorithm 2)

list contains an element < r, ccnt > not present in the local fault list, it is added
to the local fault list with ccnt set to 0.

The failure detection and this failure information propagation continues for
the initial log(n) cycles (propagation phase). Finally, to check if consensus has
been reached on the failure of process r, the value of the associated ccnt is
checked after the propagation phase. When a minimum value of the consen-
sus counter (MIN CCNT) is reached, consensus on the failure of process r is
detected (lines 6-10).

In algorithm 1, when a process p has detected consensus on k it is certain
that all processes have detected the failure of k, although they may not have
detected consensus yet. Whereas in algorithm 2 when a process p has detected
consensus on k, some processes may have not detected the failure of k yet.
The initial propagation phase of log(n) cycles before checking consensus makes
sure with a very high probability that the information on the failure of k has
reached all the processes. After the propagation phase, the probability of a

9

process receiving successive Gossip messages not containing the information on
the failure of k follows a binomial distribution. Hence, a small value of the
threshold MIN CCNT can be adopted.

3 Three-phase Consensus

Gossip-based aggregation protocols are used to compute global aggregation func-
tions like sum, count, average, etc. in a distributed system. The number of
Gossip cycles required to compute an aggregation function is shown to be log-
arithmic in the system size [20]. Checking for consensus on a failed process in-
volves counting the number of fault-free processes that have detected the failed
process. To this aim, an epidemic aggregation protocol for the count function
can be employed. In the approach proposed in this section, processes detect
failures that have occurred in the system in the same way as in the previous
approaches; they store failed processes in a local list like algorithm 2 and adopt
an ad-hoc epidemic aggregation protocol to detect the consensus. The Gossip-
based aggregation protocol proposed in [4] is used here.

The epidemic consensus protocol operates in three phases: (1) failure detec-
tion and propagation, (2) consensus and (3) commit. In phase 1, failures are
detected and propagated to all the processes using stochastic pings and Gos-
siping. During this phase, an epidemic aggregation is also used to build local
estimates of the number of fault-free processes which have detected a failure.
The local estimate of this detection count at a process is indicated as nd. When
this count reaches the expected number of fault-free processes in the system,
consensus on the failure is detected locally (local detection of consensus) and the
process makes the transition to phase 2. In phase 2, a process needs to deter-
mine if all other fault-free processes have also detected consensus on the failure.
This is achieved by means of a second epidemic aggregation to estimate a con-
sensus count, nc. When this count reaches the expected number of fault-free
processes in the system, global convergence of the consensus is detected (local
detection of global convergence) and the process makes the transition to phase
3. In phase 3, the process can safely commit the failure as it has determined
that all processes have detected consensus.

The algorithm shown in Figure 4 is executed at every process p. The pro-
cesses use the same length of the Gossip cycle, TGossip, and the timeout period,
Tout, for Gossip messages. Each process maintains a fault list Fp to store in-
formation about detected failed processes. An entry in this list is a 6-tuple
< r, d, i, vd, vc, w > where r is the rank of the failed process, d is the rank of
the first process to have detected the failure (direct failure detection), i is the
Gossip iteration number (cycle) when failure of r was detected by d, and vd,
vc and w are the two values and the weight for the epidemic aggregations in
phase 1 and 2. The triplet (r, d, i) in the tuple describes the event: at cycle i
the process d has inferred by a timeout event that process r has failed. The
pair (vd, w) in the tuple is used to estimate the number of processes which are
aware of this event. Similarly, the pair (vc, w) is used to estimate the number

10

At process p

Require: TGossip Length of a Gossip cycle, Tout Timeout period

Initialisation:
//Failed process list Fp = {e =< r, d, i, vd, vc,w >, ...}

1 Fp ← {}
Every TGossip time units:

//update entries in Fp before Gossip
2 foreach entry e =< r, d, i, vd, vc,w > in Fp

3 e←< r, d, i, vd/2, vc/2, w/2 >
4 end foreach
5 q = getRandomProcess()
6 create consensus protocol message m, where
7 m.type← ping,m.list← Fp

8 send m to q
9 create timeout event Eq =< curr cycle no+ Tout, q > for receiving reply message

from q
10 foreach entry e←< r, d, i, vd, vc,w > in Fp

11 nd = vd/w, nc = vc/w
//check for consensus on r

12 if(|(nd/(N − |Fp|))− 1| < T)
13 e =< r, d, i, vd, vc + 1,w >
14 consensus(r)
15 endif

//check for commit on r
16 if(|(nc/(N − |Fp|))− 1| < T)
17 commit(r)
18 endif
19 end foreach

At event: received message mj from j
20 if(mj .type == ping)
21 foreach entry e =< r, d, i, vd, vc,w > in Fp

22 e←< r, d, i, vd/2, vc/2, w/2 >
23 end foreach
24 create consensus protocol message m, where
25 m.type← reply,m.list← Fp

26 send m to q
27 endif

//merge entries
28 foreach entry e2 =< r2, d2, i2, vd2, vc2,w2 > in mj .list
29 if(Fp contains e1 =< r1, d1, i1, vd1, vc1, w1 > such that r1 == r2)

//Handle multiple direct detections of same failure
30 if((i2 < i1)||((i2 == i1)&&(d2 < d1)))

//Keep earliest detection or process with lowest id
31 e1←< r2, d2, i2, vd2 + 1, vc2, w2 >
32 else if((i2 == i1)&&(d2 == d1))

//Info. diffusion with exponential propagation
33 e1←< r2, d2, i2, vd1 + vd2, vc1 + vc2, w1 + w2 >
34 endif

11

35 else //Indirect detection
36 Fp ← Fp ∪< r2, d2, i2, vd2 + 1, vc2, w2 >
37 endif
38 end foreach

At event: Eq timeout and no reply message received from q within Tout:
//Direct detection

39 Fp ← Fp ∪< q, p, curr cycle no, 1, 0, 1 >
//Restore lost mass

40 foreach entry e1 =< r1, d1, i1, vd1, vc1,w1 > in Eq.m.list
41 foreach entry e2 =< r2, d2, i2, vd2, vc2,w2 > in Fp

42 if((r1 == r2)&&(i1 == i2)&&(d1 == d2))
43 e2 ←< r2, d2, i2, vd1 + vd2, vc1 + vc2, w1 + w2 >
44 endif
45 end foreach
46 end foreach

Figure 4: Three-phase consensus (algorithm 3)

of processes which have detected consensus on the failure of r. Initialisation
of the tuple (creation of the tuple) is done by d :< r, d, curr cycle no, 1, 0, 1 >
when it detects the failure of r (direct detection). When a process p receives
and inserts a new tuple in its local list, it increments vd. When the process
makes the transition to phase 2, it increments the value vc.

After initialization a process p performs three tasks during each Gossip cycle:
failure detection, failure list update and check for consensus. Every process
starts with the assumption that every other process in the system is alive: at
initialisation the local fault list is empty (line 1).

To detect failures, every TGossip time units a process p randomly selects
another process q and sends a ping message to it with the fault list Fp. Fp

contains all the elements in the list with values (vd and vc) and weights (w)
halved (lines 2-8). A timeout event is then set to receive a reply from q (line
9). An asynchronous reply follows upon reception of this ping message. Fp

sent with the message, again, contains all the elements in the list with values
and weight halved (lines 20-27). At timeout, if a reply message from q has
not been received by p, q is detected (directly) to have failed and an entry
< q, p, curr cycle no, 1, 0, 1 > is added to the fault list (line 39). To restore the
mass (

∑
i vi and

∑
i wi) in the system, the halved values and weight are added

(lines 40-46).
Upon receipt of a Gossip (ping/reply) message at p from j, the remote fault

list, Fj , is merged with the local fault list, Fp. If an entry in the remote list is
not present in the local list, it is added to the local list and thus, a failure is
indirectly detected by process p; vd is incremented by 1 to contribute towards the
failure detection count whereas vc from the remote list entry is propagated (lines
35-37). If an entry in the remote list is already present in the local list, it means
that the failure of the rank corresponding to the entry has already been detected
by rank p. In this situation, earliest detection of the failure or detection by the

12

lowest ranked process is retained (if both the failures were detected during the
same Gossip cycle) and vc from the remote list entry is propagated (lines 29-31).
If an entry is present in both the remote and local lists with the same detection
(detected during the same Gossip cycle and the same detector process), they
are merged to enable exponential failure propagation (lines 32-34).

Finally, to check if consensus has been reached on the failure of a process r
in the list, nd for r, is checked. When this value becomes equal to the expected
fault-free system size (with an allowed tolerance), consensus is reached on the
failure of process r. This implies that all the fault-free processes have recognized
the failed process r. A process, thus, detecting consensus locally contributes to
the global consensus count by incrementing vc by 1. When nc becomes equal to
the expected fault-free system size (with an allowed tolerance) commit is reached
on the failure of process r. This indicates that all the fault-free processes have
reached consensus on the failure (lines 10-19).

4 Performance Evaluation

4.1 Algorithm Analysis

In all the three algorithms, the failures are detected using stochastic failure
detection which adopts a ping-reply communication during each Gossip cycle.
The number of ping messages a process receives during a Gossip cycle follows
binomial distribution. Hence the probability of a process receiving multiple ping
messages is very low and so is the probability of a failed process not receiving
a ping message. Therefore, any failed process in the system is detected within
the first few Gossip cycles.

Once a failure is detected, it is disseminated to the fault-free processes in the
system using the ping-reply Gossip messages. [23, 26] show that the number
of Gossip cycles required for a piece of information to be disseminated from the
originator to all the processes in the system is logarithmic in system size. Al-
gorithm 1 and 2 hence achieve consensus on the detected failure in logarithmic
number of Gossip cycles. The two messages - ping and reply - in a Gossip cycle
double the information dissemination speed. Moreover, processes independently
detecting failures directly and merging these multiple failure detection informa-
tion while dissemination further increases the propagation speed and reduces
the consensus time.

Algorithm 3 disseminates the failures detected and counts the number of
fault-free processes that this information has reached using the aggregation pro-
tocol. [20] shows that the number of Gossip cycles required for computing the
aggregation function is O(log(n) + log(ϵ−1) + log(δ−1)), where n is system size,
ϵ is the maximum approximation error and δ is the maximum probability of the
error being greater than ϵ. Hence the consensus and commit times in algorithm
3 have logarithmic complexity.

The number of Gossip messages in each cycle is 2 and hence the number of
Gossip messages needed by the algorithms to detect consensus at each process

13

is twice the number of Gossip cycles taken.
The first algorithm requires n2 units of memory at each process to store the

fault matrix whereas the second and third algorithms have a space complexity
O(m), where m is the number of failed processes (m << n).

4.2 Experimental Results

All the three algorithms were implemented in the form of MPI applications,
using basic MPI point-to-point communication primitives. The fault matrix of
algorithm 1 is implemented as an integer matrix, whereas failed process details
in algorithm 2 and algorithm 3 are either integers or floating point numbers as
appropriate. Fault injection was simulated by excluding a process from further
communication.

The experiments were performed on two Linux cluster computers, one at the
University of Reading (UREAD) and one at the Oak Ridge National Labora-
tory (HAL9000). Algorithm 1 and 2 were tested on the UREAD cluster and
Algorithm 3 was tested on the HAL9000 cluster.

The UREAD cluster has one head node and 16 compute nodes. The head
node has two AMD Opteron 4386 3.1 GHz processors with eight cores per
processor and 64 GB RAM. The compute nodes have one Intel Xeon E3-1220
3.1GHz processor with four cores per processor and 16 GB RAM. The entire
system has a total of 80 compute cores. The nodes are connected by Gigabit
Ethernet. The system is running the Ubuntu 12.04 LTS operating system and
Open MPI 1.6.5.

The HAL9000 cluster has one head node and 16 compute nodes. The head
node has two AMD Opteron 2378 2.4 GHz processors with four cores per proces-
sor and 8 GB RAM. The compute nodes have two AMD Opteron 2378 2.4 GHz
processors with four cores per processor and 8 GB RAM per node. There are
128-cores for compute and 8-cores on the login/head node. The nodes are con-
nected by Gigabit Ethernet (1 Gbps). The system is running Ubuntu 14.04 LTS,
Open MPI 1.10.1 and GCC 4.8.

Experiments were executed using the Extreme-scale Simulator (xSim 0.5 on
UREAD and xSim 0.8 on HAL9000) [10, 22, 5] atop the Linux cluster(s) to
evaluate the algorithms at significantly larger scale than the available physi-
cal system. xSim is a performance investigation toolkit that permits running
MPI applications in a controlled environment with a large number of concur-
rent execution threads, while observing application performance and resilience
in a simulated extreme-scale system. Using a lightweight parallel discrete event
simulation, xSim executes an MPI application on a much smaller system in a
highly oversubscribed fashion with a virtual wall clock time, such that perfor-
mance data can be extracted based on a processor and a network model. xSim
is designed like a traditional MPI performance tool, as an interposition library
that sits between the MPI application and the MPI library, using the MPI
profiling interface. In previous experiments, it has been run up to 134,217,728
communicating MPI ranks using a 960-core Linux cluster.

14

 5

 10

 15

 20

 25

24 25 26 27 28 29 210 211

N
um

be
r

of
 G

os
si

p
cy

cl
es

Number of processes

Figure 5: Number of cycles to achieve global consensus after a single failure
injection (algorithm 1)

The simulator was deployed on the Linux cluster computer by associating
one simulator MPI process per physical processor core. Within each simulator
MPI process, a number of concurrent execution threads are executed, each rep-
resenting an individual MPI process that is located on a processor core within a
simulated HPC system. The execution timing of these simulated MPI processes
is based on a processor model with a 1-to-1 performance match to the physical
AMD processor core the simulator is running on and a network interconnect
model with a basic star topology, 1 µs link latency, and infinite bandwidth. The
model parameters were set to nominal values as the experiments investigate the
number of Gossip cycles required to reach consensus.

The maximum number of Gossip cycles in the experiments was set to 5log(n),
where n is the number of simulated MPI processes. This is large enough to
allow all the alive processes to reach consensus on the injected failures as the
information dissemination speed of Gossip-based protocols is exponential. The
length of each cycle was set to 10 ms, unless otherwise specified, considering the
difference in processors’ start up time and network round trip time. It can be
tailored to suit the HPC platform. Failures were injected into randomly chosen
simulated MPI processes. The processes detect/reach consensus/commit on the
injected failure(s) at different cycles. Hence, the cycle number of the last process
doing so is recorded.

4.2.1 Consensus using Global Knowledge:

The Gossip cycle length for a given system size was set to allow the matrix merge
operations to complete within the cycle. The cycle length was 10, 100 and 1000
ms respectively for system sizes {16,32,64,128},{256,512} and {1024,2048}. This
is necessary as matrix merge operations consume substantial amount of the cycle
time. Experiments were carried out to test the algorithm’s scalability and fault
tolerance.

15

 0

 20

 40

 60

 80

 100

 0 5 10 15 20

C
on

se
ns

us
 p

er
ce

nt
ag

e

Gossip cycle number

Figure 6: Local consensus progress at a process after a single failure injection
for system size of 2048 (algorithm 1)

 0

 10

 20

 30

 40

 50

 13 14 15 16 17 18 19

P
er

ce
nt

ag
e

of
 p

ro
ce

ss
es

Gossip cycle number

Figure 7: Consensus detection spread for a system size of 2048 (algorithm 1)

Failures were injected right before the failure detection and consensus algo-
rithm is run. Figure 5 shows the relation between the number of cycles taken
to reach consensus and the system size for a single failure injected before the
algorithm. It is evident that the number of cycles to reach consensus varies
logarithmically with the system size. Figure 6 shows the exponential spreading
of failure detection information at a particular process for the injected failure.
Both figures demonstrate the logarithmic complexity of the algorithm. Figure 7
shows the distribution of the cycle number at which different processes reach
consensus. In Figure 8, multiple (four) failures were injected before the algo-
rithm and their effect on consensus time was observed. It took only 1 or 2 cycles
more than in the single failure case (Figure 5).

Failures were injected during its execution to test the fault tolerance prop-
erty of the algorithm. In Figure 9, multiple (four) failures were injected into

16

 5

 10

 15

 20

 25

24 25 26 27 28 29 210 211

N
um

be
r

of
 G

os
si

p
cy

cl
es

Number of processes

Figure 8: Number of cycles to achieve global consensus after multiple (4) failures,
which were injected before algorithm execution (algorithm 1)

 5

 10

 15

 20

 25

24 25 26 27 28 29 210 211

N
um

be
r

of
 G

os
si

p
cy

cl
es

Number of processes

Figure 9: Number of cycles to achieve global consensus with multiple (4) failures,
which were injected during algorithm execution (algorithm 1)

randomly chosen processes at random cycles. The number of cycles needed to
reach consensus increased slightly. The algorithm is completely fault tolerant.

4.2.2 Efficient Heuristic Consensus:

The MIN CCNT was set to 3. Smaller values for MIN CCNT may detect
consensus falsely and larger values may unnecessarily delay consensus detection.

Figure 10 shows the relation between the number of cycles taken to reach
consensus on a single injected failure and the system size. It is evident that
the number of cycles to reach consensus varies logarithmically with the system
size as expected. Moreover, in this case no variance in the cycle number at
which different processes reach consensus was observed, thus achieving perfect
synchronization. The algorithm will detect consensus on any number of failures

17

 5

 10

 15

 20

 25

24 26 28 210 212 214 216 218 220

N
um

be
r

of
 G

os
si

p
cy

cl
es

Number of processes

Figure 10: Number of cycles to achieve global consensus after a single failure
injection (algorithm 2)

101

102

103

104

105

106

107

108

109

1010

22 24 26 28 210 212 214 216 218 220

B
yt

es
 p

er
 p

ro
ce

ss

Number of processes

Global Knowledge
Heuristic

Figure 11: Total bandwidth utilization of the consensus algorithms with a single
failure injection (algorithms 1 and 2)

injected before it is run.
The algorithm is scalable in terms of memory as it needs to store only the

list of failed processes at each process. The two algorithms were compared for
their bandwidth utilization. The amount of data exchanged between simulated
MPI processes is reported by xSim. Figure 11 shows the bandwidth consumed
per process at increasing system sizes. It can be observed that the heuristic-
based algorithm transfers a negligible amount of data and is significantly more
efficient than the algorithm using global knowledge.

4.2.3 Three-phase Consensus:

Epidemic three-phase failure consensus algorithm was tested by injecting a single
failure. It can detect any number of failures injected before it is run. The single

18

 0

 10

 20

 30

 40

 50

24 26 28 210 212 214 216 218

N
um

be
r

of
 G

os
si

p
cy

cl
es

Number of processes

Propagation
Consensus

Commit

Figure 12: Number of cycles taken for propagation, consensus and commit
(algorithm 3)

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50

P
er

ce
nt

ag
e

pr
oc

es
se

s

Gossip cycle number

Propagation
Consensus

Commit

Figure 13: Propagation, consensus and commit progress (algorithm 3)

injected failure was detected, propagated to all the processes (phase 1), the
processes detected consensus (phase 2) and committed on the injected failure
(phase 3). Measurements of these three phases have been collected for different
system sizes.

Figure 12 shows the relation between the system size and the number of
cycles taken to propagate, reach consensus and also to commit on the injected
failure. The tolerance between the estimated counts (for both propagation and
consensus) and the actual number of fault-free processes in the system was set
to 0.1%. The propagation, consensus and commit times all vary logarithmically
with the system size.

Figure 13 shows the exponential progress of the propagation, consensus and
commit phases for the system size of 262,144 at 0.1% tolerance. The injected
failure is detected and propagated at exponential speed; consensus and commit
are, then, detected on it and they progress at exponential speed in the system.

19

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 0 10 20 30 40 50

E
st

im
at

ed
 c

ou
nt

Gossip cycle number

Propagation
Consensus

Figure 14: Convergence of estimated count values over the Gossip cycles (algo-
rithm 3)

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90

P
er

ce
nt

ag
e

pr
oc

es
se

s

Gossip cycle number

Consensus (tolerance-1%)
Commit (tolerance-1%)

Consensus (tolerance-0.1%)
Commit (tolerance-0.1%)

Consensus (tolerance-0.01%)
Commit (tolerance-0.01%)

Figure 15: Consensus and commit comparison for different tolerances (algorithm
3)

The estimated count values for propagation and consensus at rank 0 for
the system size 262,144 at 0.1% tolerance is shown in the Figure 14. They
quickly converge to the number of fault-free processes in the system as the
Gossip progresses. It is an indication that the failure information has propagated
to all the fault-free processes in the system and consensus is detected by each
fault-free process.

The algorithms performance for different tolerance values is shown in the
Figure 15 for the system size of 65,536. Consensus and commit detection are
delayed as the tolerance is reduced for increased accuracy.

20

5 Related Work

This section discusses failure detection and consensus algorithms that have been
considered for HPC and compares them with the proposed algorithms.

5.1 Failure Detection Algorithms

5.1.1 Heartbeat-based Approaches:

A failure detection algorithm, for fail-stop type failures, using heartbeat mes-
sages was proposed in [25]. Every process maintains a log, called Gossip list,
that contains a number (called heartbeat value) for each member process to
represent its aliveness. Every TGossip time units the process increments its own
heartbeat value in the list and Gossips the list to a randomly chosen process.
When a process receives a remote Gossip list, it updates its Gossip list by setting
the heartbeat value for each process to the maximum value in the two lists. The
Gossip list is monitored continuously and if the heartbeat value for a process
has not risen for Tcleanup time units, it is suspected to have failed. There is,
however, chance of an alive process to be falsely suspected as the algorithm is
based on randomized Gossiping.

In the proposed algorithms, there is direct failure detection without passing
through the suspicion phase of the above Gossip-based failure detection. Also,
since suspicions become detections after a majority vote, the assumption that
no more than one third of processes do not fail during a single Gossip iteration
is relaxed in the proposed approach.

Another heartbeat based low overhead failure detection algorithm was pro-
posed in [6]. Processes are organized in the form of a ring and each process
monitors only its predecessor using heartbeats and timeouts. A process peri-
odically sends heartbeat messages to its monitor and the monitor detects the
process’s failure if it does not receive heartbeat message for a predefined pe-
riod. Once a process detects a failure, it broadcasts this information to all the
fault-free processes using an all-to-all reduction topology. It assumes that no
more than k failures occur, where 2k ≤ n < 2k+1 and n being the number of
processes, to enable the broadcast to complete.

In contrast, the proposed algorithms detect failures and consistently dissem-
inates them to all the fault-free processes, simultaneously, thus requiring no
failure free operation overhead. Also, the epidemic algorithms are intrinsically
fault tolerant and can tolerate any number of failures without any constraint on
the failure strike frequency.

5.1.2 Ping-based Approaches:

Algorithm for failure detection given in [13] is based on randomized pinging. A
process p randomly pings another process q. q is found to be alive if a reply
is received in time. Otherwise the p asks k randomly chosen peers to ping q
as well. If no peer receives a reply, p detects q to have failed. This approach

21

to failure detection takes network link failures into account along with process
failures.

5.2 Consensus Algorithms

Both centralized, i.e., using a coordinator, and completely distributed consensus
algorithms are available. Fault tolerant versions of the two-phase and three-
phase consensus algorithms are discussed in the following. Distributed consen-
sus algorithms based on Gossiping, which is inherently fault tolerant, are also
discussed.

5.2.1 Coordinator-based Approaches:

Over a static tree structure: A two-phase consensus algorithm to aggre-
gate locally known failures is given in [16]. Failures are presumed to be detected
prior to invoking the algorithm. It is a fault tolerant log-scaling two-phase algo-
rithm running over a tree topology. It is based on reliable gather and broadcast
operations, both built on a multi-level, tree structure communication topology.
The coordinator is at the root of the tree and makes the final decision based
on the votes by the participants organized in the form of parent and children
below it. Votes from the participants at the leaves and intermediate levels of the
tree are gathered by the coordinator at the root going through the intermediate
parent nodes and the decision from the coordinator is broadcast in the reverse
direction. In the presence of faults, the parent of a failed participant recursively
adopts its children. A child, upon detection of the failure of its parent, queries
its grandparent to know how it should continue in the algorithm. If it has not
voted yet, it will participate in the voting phase. If it has voted but the parent
failed before propagating the vote up, it will cast the vote again; if the parent
propagated the vote, it will participate in the decision phase. A termination de-
tection algorithm is invoked upon failure of the coordinator. The parent directly
below the coordinator decides the termination status: success with failed pro-
cess list if it received decision from the coordinator, or abort if it has not voted
yet. The participant, thus making the decision, propagates it below the tree.
However, the termination detection will not be of any help if the coordinator
failed without propagating its decision after the voting phase. [14] handles this
by enabling a fault-free process taking the role of the coordinator and restarting
the algorithm. The tree is rebalanced with the new alive processes between
invocations of the algorithm and thus the approach involves maintenance of the
communication structure, which is not needed by the algorithms proposed in
this paper.

Failures that happen during the execution of the two-phase consensus are
not included in the final list and a coordinator failure aborts the algorithm.
Hence, it is not a completely fault tolerant consensus algorithm. In contrast,
the first two algorithms presented in this paper are completely fault tolerant, as
they tolerate failures during the execution.

22

Over a dynamic tree structure: The approach in [7] assumes that a process
knows of a few failed processes (a failure detector is again assumed to be readily
available) to contribute towards the global list of failed processes. It is built
around a reliable broadcast algorithm that dynamically constructs the broadcast
tree and a three-phase consensus algorithm.

In the BALLOTING phase, the root generates a ballot (which is a sequence
number to differentiate between iterations) and broadcasts it, including the
known list of failed processes. The child, upon receipt of the broadcast message,
checks whether it has any new failed processes known to it but not in the ballot
it received. It sends a REJECT message piggybacked with the ACK message
including the new failed processes if any; it accepts the ballot otherwise and
sends an ACCEPT message piggybacked with the ACK message. The root
starts the next phase if it receives an ACCEPT message piggybacked with
the ACK message from all its children and if any child rejects the ballot it
updates its set of failed processes and tries again. In the second phase, the root
broadcasts the AGREE message with the ballot. Now the participants know
that the ballot has been agreed upon by everyone and they agree to the ballot
for the second phase. Then the root starts the third phase by broadcasting the
COMMIT message. The participants upon receipt of the COMMIT message
commit to the ballot.

A failure of the root is checked by every process and when a process detects
that all processes with ranks lower than itself have failed it appoints itself as
the new root. The new root restarts the algorithm from whatever state it is in.
Note that if the root fails when it is in the BALLOTING state, the new root
has to start all over again, wasting all the iterations performed so far. Failures
of participants are handled by repeating phase one of the algorithm with a new
sequence number included in the ballot. When a broadcast message belonging
to an old iteration arrives at a process, which is not in the BALLOTING state,
a NAK with AGREE FORCED is forwarded to the root to clean up the old
circulating broadcast messages. This message is also used by the root to start
Phase 2 of the algorithm (with the assumption that process failures will subside
and cease).

It was tested by injecting failures into randomly chosen processes before
and during the execution. The processes that fail during the operation of the
algorithm may or may not be included into the final list of failed processes.
Moreover, every failure that happens while the algorithm is running requires the
algorithm to start all over again by rebuilding the communication structure. The
algorithms proposed in this paper do not require any communication structure.

5.2.2 Gossip-based Approaches:

In Gossip-based approaches, failure detection is performed as explained in Sec-
tion 2.1 and consensus is (in combination with failure detection) also imple-
mented using Gossiping [25], and hence completely fault tolerant. Each process
maintains a suspicion matrix S to store the status of processes as detected by
all the processes. An entry Si,j in a process’s suspicion matrix indicates the

23

status of process j as detected by process i (1 if suspected to have failed 0
otherwise). It also maintains a fault vector F to store the processes’ status as
decided by all processes. An entry Fi in this vector is 1 if the majority of the
processes suspect process i to have failed. The suspicion matrix is sent to other
processes as part of Gossiping. When a process receives this suspicion matrix,
it merges it with its own suspicion matrix. A process updates its fault vector
by examining the suspicions of all processes. If the majority of the processes
have suspected a process to have failed, it decides that the process has indeed
failed and updates its fault vector to reflect this. Consensus is reached when all
processes have detected a process to have failed. Upon detection of consensus
a process broadcasts a consensus message to all the live processes.

Because every process needs to maintain a suspicion matrix of O(n2), where
n is the system size, this algorithm is memory intensive and does not scale well.
For increasing process numbers (beyond 48) the consensus time was found to
increase exponentially. The first algorithm proposed in this paper also uses a
matrix at each process, but the second and the third algorithms use only a list
at each process. The algorithms given in this paper scale logarithmically with
system size.

The proposed approach in this paper bypasses the failure suspicion phase
based on distributed diagnosis. Since suspicions become detections after a ma-
jority vote, the assumption that no more than one third of processes do not fail
during a single Gossip iteration is relaxed in this approach.

Experiments in the state of the art HPC failure detection and consensus
literature, have featured not more than a few thousand processes, whereas the
proposed algorithms (algorithm 2 and algorithm 3) scaled to hundreds of thou-
sand processes on a small cluster computer.

6 Conclusion and Future Work

Failure detection and consensus for a fault-tolerant MPI enable HPC applica-
tions to adopt algorithm-based fault tolerance techniques to cope with MPI
process failures more efficiently. Centralized methods for failure detection and
consensus are based on a coordinator and do not scale well to very large and
extreme-scale systems. Completely distributed algorithms based on Gossiping
that were previously proposed in the literature consume an inordinate amount
of time, memory and network bandwidth.

In this work three novel failure detection and consensus algorithms that use
randomized pinging were presented. The first approach is based on global knowl-
edge: each process maintains a local view of the entire system state to achieve
consensus on failed processes. A Gossip protocol is used to detect failures and
to exponentially propagate them in the system until the local views converge.
The second algorithm does not rely on global knowledge and adopts a heuristic
method to achieve consensus on failures. The third algorithm maintains only
a list of failures as in the second algorithm and detects consensus using three
phases incorporating a Gossip-based aggregation protocol. The same Gossip

24

messages used for failure information dissemination are also used for detecting
the failures stochastically thus integrating both failure detection and consensus.

All the algorithms were implemented as MPI applications and tested using
the Extreme-scale Simulator. The results confirm their expected scalability and
fault tolerance properties. In the algorithms, the number of Gossip cycles to
achieve consensus on failures scales logarithmically with the system size. The
second algorithm has significantly lower memory and bandwidth utilization and
has shown to be able to achieve a perfect consensus synchronization as well.
The third algorithm retains the scalability of the second algorithm and detects
consensus accurately using an aggregation protocol for the count aggregation
function.

The first algorithm can be implemented with boolean matrices at each pro-
cess to increase scalability. The second and third algorithms’ memory scalability
can be further improved by maintaining the status of processes in a bit vector,
if the number of failures in the system is high. It would also be interesting to
investigate an efficient algorithm with a different heuristic approach for detect-
ing consensus asynchronously and without the guaranteed initial propagation
phase: this would allow detecting consensus on failures that happen both before
and during the execution of the algorithm. Investigating processes entering alive
state from faulty state is also interesting. This would avoid false positives and
also allow process recovery.

Further future work in this area focuses on implementing
MPI Comm shrink() and MPI Comm agree() with different approaches (static
and dynamic tree, as well as, the different Gossip-based variants) and compare
them using the Extreme-scale Simulator with architectural models of future-
generation HPC systems.

7 Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with respect to the
research, authorship, and/or publication of this article.

8 Funding

The author Amogh Katti was supported by the Felix Scholarship for his PhD
project.

This work was sponsored by the U.S. Department of Energy’s Office of Ad-
vanced Scientific Computing Research. This manuscript has been authored by
UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. De-
partment of Energy.

25

References

[1] Barak, A., Drezner, Z., Levy, E., Lieber, M., and Shiloh, A.
Resilient gossip algorithms for collecting online management information in
exascale clusters. Concurrency and Computation: Practice and Experience
27, 17 (2015), 4797–4818.

[2] Baumann, R. C. Radiation-induced soft errors in advanced semiconduc-
tor technologies. IEEE Transactions on Device and Materials Reliability
(TDMR) 5, 3 (2005), 305–316.

[3] Bland, W., Bosilca, G., Bouteiller, A., Herault, T., and Don-
garra, J. A proposal for user-level failure mitigation in the mpi-3 stan-
dard. Department of Electrical Engineering and Computer Science, Uni-
versity of Tennessee (2012).

[4] Blasa, F., Cafiero, S., Fortino, G., and Di Fatta, G. Symmetric
push-sum protocol for decentralised aggregation. Proc. of the Int. l Conf.
on Advances in P2P Systems (2011), 27–32.

[5] Böhm, S., and Engelmann, C. xSim: The extreme-scale simulator. In
Proceedings of the International Conference on High Performance Comput-
ing and Simulation (HPCS) 2011 (Istanbul, Turkey, July 4-8, 2011), IEEE
Computer Society, Los Alamitos, CA, USA, pp. 280–286.

[6] Bosilca, G., Bouteiller, A., Guermouche, A., Herault, T.,
Robert, Y., Sens, P., and Dongarra, J. Failure detection and prop-
agation in hpc systems. In Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis (Piscat-
away, NJ, USA, 2016), SC ’16, IEEE Press, pp. 27:1–27:11.

[7] Buntinas, D. Scalable distributed consensus to support mpi fault tol-
erance. In Parallel & Distributed Processing Symposium (IPDPS), 2012
IEEE 26th International (2012), IEEE, pp. 1240–1249.

[8] Chandra, T. D., Hadzilacos, V., Toueg, S., and Charron-Bost,
B. On the impossibility of group membership. In Proceedings of the fifteenth
annual ACM symposium on Principles of distributed computing (1996),
ACM, pp. 322–330.

[9] Chandra, T. D., and Toueg, S. Unreliable failure detectors for reliable
distributed systems. Journal of the ACM (JACM) 43, 2 (1996), 225–267.

[10] Engelmann, C. Scaling to a million cores and beyond: Using light-weight
simulation to understand the challenges ahead on the road to exascale.
Future Generation Computer Systems (FGCS) 30, 0 (Jan. 2014), 59–65.

[11] Fischer, M. J., Lynch, N. A., and Paterson, M. S. Impossibility of
distributed consensus with one faulty process. Journal of the ACM (JACM)
32, 2 (1985), 374–382.

26

[12] Geist, A. Supercomputing’s monster in the closet. IEEE Spectrum 53, 3
(March 2016), 30–35.

[13] Gupta, I., Chandra, T. D., and Goldszmidt, G. S. On scalable
and efficient distributed failure detectors. In Proceedings of the twentieth
annual ACM symposium on Principles of distributed computing (2001),
ACM, pp. 170–179.

[14] Herault, T., Bouteiller, A., Bosilca, G., Gamell, M., Teranishi,
K., Parashar, M., and Dongarra, J. Practical scalable consensus for
pseudo-synchronous distributed systems. In Proceedings of the Interna-
tional Conference for High Performance Computing, Networking, Storage
and Analysis (2015), ACM, p. 31.

[15] Huang, K.-H., and Abraham, J. A. Algorithm-based fault tolerance for
matrix operations. IEEE Transactions on Computers (TC) C-33, 6 (1984),
518–528.

[16] Hursey, J., Naughton, T., Vallee, G., and Graham, R. L. A log-
scaling fault tolerant agreement algorithm for a fault tolerant mpi. In Recent
Advances in the Message Passing Interface. Springer, 2011, pp. 255–263.

[17] Kaplan, L., Briggs, P., Ohlrich, M., and Leslie, W. Resilience to
various failures for read-mostly in-memory data structures. In 26th IEEE
International Parallel and Distributed Processing Symposium (IPDPS)
2012: Workshops (2012), pp. 1572–1580.

[18] Katti, A., Di Fatta, G., Naughton, T., and Engelmann, C. Scal-
able and fault tolerant failure detection and consensus. In Proceedings of
the 22nd European MPI Users’ Group Meeting (2015), ACM, p. 13.

[19] Kaul, H., Anders, M., Hsu, S., Agarwal, A., Krishnamurthy, R.,
and Borkar, S. Near-threshold voltage (NTV) design: Opportunities and
challenges. In Proceedings of the 49th Annual Design Automation Confer-
ence (New York, NY, USA, 2012), DAC ’12, ACM, pp. 1153–1158.

[20] Kempe, D., Dobra, A., and Gehrke, J. Gossip-based computation of
aggregate information. In Foundations of Computer Science, 2003. Pro-
ceedings. 44th Annual IEEE Symposium on (2003), IEEE, pp. 482–491.

[21] Ltaief, H., Gabriel, E., and Garbey, M. Fault tolerant algorithms
for heat transfer problems. Journal of Parallel and Distributed Computing
(JPDC) 68, 5 (2008), 663–677.

[22] Naughton, T., Engelmann, C., Vallée, G., and Böhm, S. Sup-
porting the development of resilient message passing applications using
simulation. In Proceedings of the 22nd Euromicro International Confer-
ence on Parallel, Distributed, and network-based Processing (PDP) (Turin,
Italy, Feb. 12-14, 2014), IEEE Computer Society, Los Alamitos, CA, USA,
pp. 271–278.

27

[23] Pittel, B. On spreading a rumor. SIAM Journal on Applied Mathematics
47, 1 (1987), 213–223.

[24] Poonpakdee, P., Orhon, N. G., and Di Fatta, G. Convergence
detection in epidemic aggregation. In Euro-Par 2013: Parallel Processing
Workshops (2014), Springer, pp. 292–300.

[25] Ranganathan, S., George, A. D., Todd, R. W., and Chidester,
M. C. Gossip-style failure detection and distributed consensus for scalable
heterogeneous clusters. Cluster Computing 4, 3 (2001), 197–209.

[26] Shah, D. Gossip algorithms. Now Publishers Inc, 2009.

[27] Skeen, D. Nonblocking commit protocols. In Proceedings of the 1981
ACM SIGMOD International Conference on Management of Data (New
York, NY, USA, 1981), SIGMOD ’81, ACM, pp. 133–142.

[28] Snir, M., Wisniewski, R. W., Abraham, J. A., Adve, S. V., Bagchi,
S., Balaji, P., Belak, J., Bose, P., Cappello, F., Carlson, B.,
Chien, A. A., Coteus, P., Debardeleben, N. A., Diniz, P., En-
gelmann, C., Erez, M., Fazzari, S., Geist, A., Gupta, R., John-
son, F., Krishnamoorthy, S., Leyffer, S., Liberty, D., Mitra,
S., Munson, T., Schreiber, R., Stearley, J., and Hensbergen,
E. V. Addressing failures in exascale computing. International Journal of
High Performance Computing Applications (IJHPCA) 28, 2 (May 2014),
127–171.

[29] Soltero, P., Bridges, P., Arnold, D., and Lang, M. A gossip-based
approach to exascale system services. In Proceedings of the 3rd Interna-
tional Workshop on Runtime and Operating Systems for Supercomputers
(2013), ACM, p. 3.

[30] Straková, H., Niederbrucker, G., and Gansterer, W. N. Fault
tolerance properties of gossip-based distributed orthogonal iteration meth-
ods. Procedia Computer Science 18 (2013), 189–198.

[31] Turek, J., and Shasha, D. The many faces of consensus in distributed
systems. Computer 25, 6 (1992), 8–17.

9 Author Biography

Dr Amogh Katti is a Post-Doctoral Research Associate at the Department
of Electrical and Computer Engineering, University of Minnesota, USA. He
received his PhD in Computer Science at the University of Reading, UK in
2016. He did his Master of Technology (M Tech) and Bachelor of Engineer-
ing (B E) from Visweswariah Technological University, India in 2010 and 2006
respectively. He was an Assistant Professor at Walchand Institute of Technol-
ogy, Solapur, India, from 2010 to 2012, and a Software Engineer at Mphasis,

28

Bangalore, India in 2007. His research interests are fault tolerance and energy
efficiency in parallel computing, and software engineering.

Dr. Giuseppe Di Fatta is an Associate Professor of Computer Science
and currently the Head of the Department of Computer Science at the Uni-
versity of Reading, UK. In 1999, he was a research fellow at the International
Computer Science Institute (ICSI), Berkeley, CA, USA. From 2000 to 2004, he
was with the High-Performance Computing and Networking Institute of the Na-
tional Research Council, Italy. From 2004 to 2006, he was with the University
of Konstanz, Germany. His research interests include data mining algorithms,
distributed and parallel computing, and multidisciplinary applications. He has
published over 90 articles in peer-reviewed conferences and journals. He serves
in the editorial board of the Elsevier Journal of Network and Computer Appli-
cations. He is the co-founder of the IEEE ICDM Workshop on Data Mining in
Networks and has chaired several international events, such as the 2015 Inter-
national Conference on Internet and Distributed Computing Systems.

Dr. Thomas Naughton is an R&D Staff Scientist at Oak Ridge National
Laboratory. His research interests include resilience and fault-injection tools
for high-performance computing (HPC). He also works on resource manage-
ment/runtime systems for HPC, which includes research involving system-level
virtualization and isolation. Dr. Naughton received a B.A. in Philosophy and
B.S. in Computer Science from the University of Tennessee-Martin in 1998, a
M.S. in Computer Science from Middle Tennessee State University in 2000, and
a Ph.D. in Computer Science from the University of Reading in 2014. He is a
member of the ACM.

Dr. Christian Engelmann is an R&D Staff Scientist at Oak Ridge Na-
tional Laboratory. His primary expertise is in extreme-scale high-performance
computing (HPC) resilience. He received the 2015 US Department of Energy
Early Career Award for research in resilience design patterns for extreme scale
HPC. His secondary expertise is in lightweight simulation of future-generation
extreme-scale supercomputers with millions of processors. Dr. Engelmann
earned a M.Sc. in Computer Systems Engineering from the University of Ap-
plied Sciences Berlin, Germany, in 2001, a M.Sc. in Computer Science from
the University of Reading, UK, in 2001, and a Ph.D. in Computer Science from
the University of Reading in 2008. He is a member of the ACM, IEEE, and
USENIX.

29

