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Abstract

Complex systems as networks always exhibit strong regularities, implying underlying mechanisms governing their evolution. In
addition to the degree preference, the similarity has been argued to be another driver for networks. Assuming a network is randomly
organised without similarity preference, the present paper studies the expected number of common neighbours between vertices. A
symmetrical similarity index is accordingly developed by removing such expected number from the observed common neighbours.
The developed index can not only describe the similarities between vertices, but also the dissimilarities. We further apply the
proposed index to measure of the influence of similarity on the wring patterns of networks. Fifteen empirical networks as well
as artificial networks are examined in terms of similarity intensity and degree heterogeneity. Results on real networks indicate
that, social networks are strongly governed by the similarity as well as the degree preference, while the biological networks and
infrastructure networks show no apparent similarity governance. Particularly, classical network models, such as the Barabási-Albert
model, the Erdös-Rényi model and the Ring Lattice, cannot well describe the social networks in terms of the degree heterogeneity
and similarity intensity. The findings may shed some light on the modelling and link prediction of different classes of networks.

Keywords: Complex networks; vertex similarity; common neighbours

1. Introduction

Networks can efficiently describe a wide range of complex
systems, such as social systems, biological systems and infras-
tructure systems [1, 2, 3, 4]. Since most real-world networks are
either incomplete or evolving, to understand the dynamics and
growing patterns of networks has attracted increasing attentions
[5, 6, 7, 8, 9, 10, 11].

The degree preference has been considered as the key at-
tractiveness driving the evolution of networks [12, 13, 14, 15]
since the finding of scaling phenomena [16]. However, real
networks are also found to be highly clustered [17] and with
dense community structure [18, 19] which cannot be explained
by the preferential attachment mechanism alone. Accordingly,
vertex similarity is also argued to be a driver for networks [20]
and has been applied to study the formation and evolution of
different networks [21, 22, 23, 24]. While the ground-truth
similarities among vertices are mostly unknown, a number of
similarity indices have been developed by evaluating either the
adjacency matrix or the common neighbour structure of the net-
work [25, 26, 27, 28, 29]. Normally, the vertices that share the
same neighbours (adjacent vertices) are considered to be simi-
lar to each other. However, the similarities quantified by these
indices mostly have systematic bias regarding the vertex de-
gree [6, 26, 30] that hub vertices tend to have more common
neighbours with others due to their rich connectivities. As a
consequence, it is difficult to determine whether the common
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neighbours are due to the similarity between vertices or just
random mechanism. Additionally, most indices give only pos-
itive values without an indication of neutral similarity. Even
with a same similarity value, the meaning would be different in
different scenarios such as the degrees of the measured vertices
and the degree distribution of the given network. For exam-
ple, two vertices α and β having 5 common neighbours could
indicate that they are extremely similar to each other if their
degrees are kα = kβ = 5, but could also be interpreted as ex-
tremely dissimilar if their degrees kα ≈ N, kβ ≈ N where N is
the network size, because they are expected to have a lot more
common neighbours. Therefore, the key question needs to be
answered is that how many common neighbours two particular
vertices are expected to share in a given network. Finally, to
what extent does the similarity shape the structure and evolu-
tion of a given network is still an open question due to the lack
of an unbiased and symmetrical similarity index.

In this paper we study the expected number of common
neighbours between two vertices which is shown to be deter-
mined by the degree heterogeneity of the network. A vertex
similarity index is thereby proposed by comparing the number
of common neighbours with the expected number so that the
random factors are removed. We further define the similarity
intensity to quantify the governance of similarity in complex
networks as the average similarity over all the connected ver-
tex pairs in the network. The similarity intensities and degree
heterogeneities of fifteen real networks are investigated and the
social networks are found to be a special class which has both
high degree heterogeneity and similarity intensity.

Preprint submitted to Elsevier August 21, 2017
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Fig. 1: (Color online.) Illustration of the random rewiring. Each vertex v in the
network has kv half-edges to be paired with others’ and each pair of half-edges
has equal chance to be connected. Obviously, vertices with more half-edges are
more likely to be connected to each other.

2. A Balanced vertex similarity index

The vertices that share common neighbours are usually con-
sidered to be similar to each other. However, two vertices x and
y that are not similar to each other at all, especially these with
large degrees, could still have common neighbours by chance.
For example, in a network of 10 vertices, x and y with degrees
kx = ky = 6 should have at least 3 common neighbours, but hav-
ing 3 common neighbours does not mean that they are similar.
In other words, every pair of vertices x and y with no similarity
are expected to have a certain amount of common neighbours
nexp

xy due to pure random mechanism. In a given network, if
the observed number of common neighbours nxy = nexp

xy , we
can consider these two vertices x and y to be neutral to each
other. Accordingly, the difference between the observed and
expected number of common neighbours nxy − nexp

xy can be used
to describe the tendency of x and y to connect the same ver-
tices, which we argue is a more meaningful way to represent
their similarity. Therefore, we calculate the expected number
of common neighbours between two vertices with given de-
grees in a given network, so that we can remove the random-
caused common neighbours from the observed number to esti-
mate their similarity.

Consider a network consisting of a set of N vertices V =

{v1, v2, · · · , vN}, and a set of M edges E = {e1, e2, · · · , eM}. The
expected number of common neighbours between two vertices
can be calculated by considering a random rewiring process of
a network. Assume all the edges are broken into two half-edges
(stubs) and thus each vertex v has kv half-edges to be paired
again with others as shown in Fig. 1. This process is nor-
mally referred as the configuration model [2, 31] which gen-
erates random networks with a given degree sequence. In the
rewiring process of the present paper, for each of v’s half-edges,
the paired half-edge is chosen randomly but from another ver-
tex that has not been connected by v to avoid multi edges or
self-loops. Therefore, the probability of the paired half-edge
coming form vertex j is k j/

∑
v kv. Considering all the ki edges

that vertex i possessing, we have the probability of two random
vertices i and j connecting with each other [32, 33],

p(i↔ j) =
kik j∑

v kv
. (1)

Accordingly, the probability of a vertex i being a common
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Fig. 2: Number of common neighbours between two vertices x and y, nxy ver-
sus the product of the corresponding vertices’ degrees kxky in BA networks.
The dashed straight line has a slope of 1 in the log-log plot. The simulated
network starts from a complete network of m0 = 6 vertices. At each of the
following step, one vertex is added to the network to connect to m = 5 exist-
ing vertices. The probability of each vertex being connected is proportional to
its current degree, i.e. p(v) ∝ kv. Vertices are added continuously until the
network size reach N = 104. Considering most vertex pairs would have no
common neighbour at all in a single realisation of network, we average nxy
over 104 realisations of the generated BA network. We rewire the generated
BA network as follows: a) select two from N〈k〉/2 edges uniformly at random;
b) chose one vertex from each edge and switch if this will not result in multi
edges or self-loops; c) repeat a) and b) for N〈k〉 times. In such way, the degree
of each vertex will not be changed and we can average the number of common
neighbours between two specific vertices accordingly.

neighbour for vertices x and y, i.e. connecting to both x and
y, can be written as,

p(i↔ x, y) =
ki(ki − 1)
(
∑

v kv)2 · kxky. (2)

Considering all the possible common neighbours, we then
have the expected number of common neighbours for x and y
which reads,

nexp
xy =

∑
i

p(i↔ x, y) =

∑
v kv(kv − 1)
(
∑

v kv)2 · kxky. (3)

Therefore, as suggested by Eq. (3), the neighbourhood size
for two vertices x and y is expected to have a linear relation
with the product of their degrees, i.e. nexp

xy ∝ kxky. We test
such relation using the Barabási-Albert (BA) network model
[16]. The BA model is a random network model in which the
edges are attached randomly according to the degree preference
without predefined similarity. Accordingly, the vertices in a
BA network are expected to be with no similarity and thus we
should have nexp

xy = nxy. As shown in Fig. 2, the averaged
number of common neighbours for two vertices x and y has the
linear correlation with the product kxky as predicted by the Eq.
(3).

Actually, one can find that, in Eq. (3),
∑

v kv can be given
by the product of the network size and the average degree,
N〈k〉. Accordingly, we have also

∑
v kv(kv −1) = N

(
〈k2〉 − 〈k〉

)
.

Therefore, we can rewrite the expression for the expected num-
ber of common neighbours as

nexp
xy =

〈k2〉 − 〈k〉
N〈k〉2

· kxky. (4)
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The parameter for the product of the degrees basically describes
the degree distribution feature of the network. The component
〈k2〉/〈k〉2 is usually used to described a network’s degree het-
erogeneity H [29, 34]. With a unified degree for each vertex,
a network has 〈k2〉 = 〈k〉2 and thus heterogeneity H = 1. The
more heterogeneous the network’s degree distribution is, the
higher the value H would generally be. The BA network with
the applied settings in this paper has a degree heterogeneity
H = 2.79 ± 0.08. The parameter here is thus a function of
the degree heterogeneity. Here we define it as a heterogeneity
parameter denoting withH , which consequently reads,

H =
1
N
·

(
〈k2〉

〈k〉2
−

1
〈k〉

)
=

1
N
·

(
H −

1
〈k〉

)
. (5)

Introducing Eq. (5) to Eq. (4) gives us the final expression for
the expected number of common neighbours for two randomly
given vertices x and y,

nexp
xy = H · kxky. (6)

Basically, the more heterogeneous the degree is, the more com-
mon neighbours two vertices with given degrees would share,
and on the other hand, vertices with higher degrees are likely to
have more common neighbours with others. With the expected
number of common neighbours nexp

xy as the estimation for the
random component nrand

xy , we can then define the similarity be-
tween vertices x and y as

sxy = nxy − nexp
xy = |Γx ∩ Γy| − H · kxky, (7)

where Γv is the set of vertices that are connecting to vertex v
and |Γ| gives the number of vertices in the set. Thus, the de-
fined similarity sxy indicates how many more (or less) common
neighbours are vertices x and y sharing than expected. If the
number of common neighbours is the same to expected, i.e.
sxy = 0, one can then consider x and y to be neutral to each
other. On the other hand, if the vertices x and y share more
(less) neighbours, i.e. sxy > 0 (sxy < 0), they are suggested to
be similar (dissimilar) to each other.

Actually in ref. [26], a similarity index normally referred
as the LHN index was proposed with considerations similar to
that in this paper. They derived the expected number of paths
between two vertices with length of two, which is in another
word the number of common neighbours. Although the same
expression for the expected number of common neighbours was
derived, they defined the vertex similarity sLHN

xy by dividing the
real number by the expected number, i.e. [26],

sLHN
xy =

|Γx ∩ Γy|

kxky
. (8)

While such definition has shown accuracy in estimating the
similarities in many networks, we believe our definition shown
in Eq. (7) has advantages in following aspects. The real
networks are usually extremely sparse, and thus a significant
amount of vertex pairs will share no common neighbours at
all. For such vertices, the LHN index considers the similari-
ties uniformly to be zero. However, two hub vertices having
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Fig. 3: (Color online.) Estimated similarity using the proposed index in the net-
works where the similarities are predefined. The vertical and horizontal dashed
lines shows the neutral case for the predefined and estimated similarity respec-
tively. The results are achieved with a network size of N = 104. With the
same angular position for each vertex (thus same predefined similarity between
each vertex pair), we generated 103 networks. Accordingly, the estimated sim-
ilarities are averaged over all vertex pairs with the same predefined similarity
level.

no common neighbours has apparently different meaning from
two low-degree vertices sharing no neighbours. The Eq. (7) is
able to estimate the similarity for vertex pairs sharing even no
neighbours. Additionally, the index defined in this paper may
yield negative values when the number of common neighbours
are less than expected (random case), which can be regarded
as the dissimilarity between the measured vertices. Especially,
with the random case as the baseline, we can apply the defined
similarity index to explore that whether, or to what extent, is the
similarity governing the complex networks (to be discussed in
the following section).

To test the accuracy of the proposed similarity index, we
introduce the influence of similarities into the BA network
model. We randomly assign an angular position θ to each ver-
tex. Vertices near to each other (with small angular distance),
are considered to be similar to each other. Therefore, the prede-
fined similarity between two vertices x and y can be written as
sp

xy = 1 − 2∆θxy/π, where ∆θxy is the angular distance between
the two vertices, i.e. ∆θxy = π − |π − |θx − θy||. Thus the larger
the similarity sp

xy is, the more similar the vertices are considered
to be. Instead of letting new vertex attach each of its m edges
to an existing vertex i with probability proportional to only the
degree, i.e. Π ∝ ki, we define the probability of connecting i as
Π ∝ ki/(1 + e−βsp

xy ), where β is a parameter controlling the influ-
ence of similarity. The case β = 0 gives the standard BA model
where the edges are attached according to only the degree with
no enhancement from the similarity. For any positive β, the
similar vertices are more likely to connect with each other and
the larger the parameter β is, the stronger the influence of simi-
larity would be governing the network evolution. Additionally,
with such mechanism, positive predefined similarities sp

xy > 0
will enhance the probability of attachment while negative val-
ues reduce such probability. As shown in Fig. 3, the proposed
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similarity index can recover the predefined similarity by exam-
ining the network wiring patterns. The larger the parameter β
is, the more distinguishable the estimated similarity would be.
Most importantly, the proposed index is accurate in detecting
whether the vertices are similar, dissimilar or neutral to each
other. On the other hand, most other similarity indices, though
can tell which vertex pair is more similar in comparison to other
vertex pairs, cannot show it is similar or dissimilar for a specific
pair of vertices.

3. Similarity intensity of networks

Since we have defined a symmetrical similarity index which
can be used to detect whether two vertices are similar or dis-
similar to each other in comparison to the random case, in
this section we examine the connected vertices in a given net-
work to explore whether and to what extent the edges are es-
tablished according to the similarity. For each edge e, we ex-
amine the similarity between the two vertices ex and ey on
the ends, sexey . Note that, as ex and ey have already con-
nected to each other, in the calculation of similarity, we ex-
clude this edge from the vertex degrees, leading the similarity
to sexey = |Γex ∩ Γey | − H(kex − 1)(key − 1). Accordingly, we
define the similarity intensity of the network S as the average
similarity of every pair of connected vertices, which reads,

S =
1
|E|

∑
e∈E

sexey . (9)
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Fig. 4: (Color online.) Similarity intensity S and degree heterogeneity H in
ER networks, BA networks and Ring Lattices. For the ER and BA networks,
the results for each size and average degree are averaged over 50 independent
realisations.

Therefore, a positive value of S suggests that the connected
vertices share more common neighbours than expected which
implies that the evaluated network is shaped by the similarity.
On the other hand, a neutral value S = 0 indicates that the
formation of the network is irrelevant to the similarity. Addi-
tionally, larger values suggest strong governance of similarity
in the network evolution.

We firstly analyse the similarity intensity S and degree het-
erogeneity H of artificial networks, including the ER network
[36], BA network [16], and Ring Lattice. In particular, we study
the influence of edge densities [35] on the two features.

The ER random network takes a fixed probability for each
vertex pair to establish an edge. Since the edges are established
randomly, the ER networks have no similarity preference and
thus one should expect a neutral similarity intensity S = 0.
As expected, the similarity intensity of ER networks is shown
by Fig. 4(a) to be neutral regardless of the network size and
average degree. Additionally, following a Poisson degree dis-
tribution, the ER random networks’ degree heterogeneity H is
very close to the lower-limit 1 as shown in Fig. 4(b).

The BA network which introduces the degree preference to
model the power-law degree distribution observed in real net-
works, has been considered as a standard heterogeneous net-
work and thus has a relatively high degree heterogeneity. As
shown in Fig. 4(d), the degree heterogeneity of BA networks is
correlated with the network size and the average degree, but al-
ways takes value that is significantly larger than 1. On the other
hand, the edges in BA networks are attached purely accord-
ing to the degree preference, the similarity intensity S takes a
neutral value (close to 0) similar to the ER random network as
shown in Fig. 4(c).

Different from the ER and BA networks, the ring lattice is a
regular network which places N vertices evenly on a circle and
lets each vertex connect to its 〈k〉 nearest neighbours. There-
fore, every vertex has exactly the same degrees and thus the
degree heterogeneity is H = 1 for ring lattice regardless of
the size and average degree (Fig. 4(f)). On the other hand,
since the edges are established according to the positions, the
vertices near (similar) to each other will have many common
neighbours leading to a high degree heterogeneity as shown in
Fig. 4(e). Assuming the vertices are numbered according to
their positions, the neighbours of an arbitrary vertex i will be
Vi = {i − 〈k〉/2, · · · , i − 1, i + 1, · · · , i + 〈k〉/2}. The number
of common neighbours between i and j ( j ∈ Vi) can be given
by ni j = 〈k〉 − | j − i| − 1. Accordingly, the average number of
common neighbours for vertex pairs involving i is

〈ni〉 =

∑
j∈Vi

(〈k〉 − | j − i| − 1)
〈k〉

=
〈k〉2 − 〈k〉 − 2

∑〈k〉/2
m=1 m

〈k〉
=

3〈k〉 − 6
4

.

(10)

Accordingly we can theoretically have the similarity intensity
of an ring lattice to be

Sring =
3〈k〉 − 6

4
−H · 〈kxky〉 =

3〈k〉 − 6
4

−
〈k〉2

N
(1−

1
〈k〉

). (11)
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Table 1: Statistics of networks applied in this paper. In the table, N and M represent the number of vertices and edges respectively; C is the clustering coefficient
[17]; r is the degree assortativity coefficient [37]; H represent the degree heterogeneity, i.e. H = 〈k2〉/〈k〉2; and the S is the defined similarity intensity. In the
Coauthorship network, vertices are authors and an edge represents at least one common publication between two authors. The Facebook, Yelp, Gowalla and Flixster
are social networking websites where users (vertices) can establish online friendships (edges) with others. The Trust network is based on an encryption program,
entitled Pretty-Good-Privacy (PGP) where vertices are certificates and an edge represents authorisation from the owner of a certificate to that of another. The
Email network describes the email exchanges (edges) between employees (vertices) of the company Enron. The Yeast and PDZBase networks are the metabolic
interactions (edges) between proteins (vertices). For the Road networks of Pennsylvania (PA.) and California (CA.), a road is an edge connecting intersections
as vertices. For the power grid, either a generator, a transformer or a substation is regarded as a vertex while the supply lines are regarded as edges. The animal
networks regards animals, i.e. dolphins, zebras and kangaroos respectively, as vertices and there will be an edge connecting two individuals if they have at least one
interaction during observation. All the empirical networks are considered as simple graphs, i.e. unweighted, undirected.

Network Type Network N M 〈k〉 C r H S

Social

Coauthorship [38] 18771 198050 21.1 0.63 0.45 3.09 19.65
Facebook [39] 63731 817035 25.64 0.22 0.42 3.43 12.36
Trust (PGP) [20] 10680 24316 4.55 0.26 0.42 4.14 6.58
Email [40] 36692 183831 10.02 0.49 0.13 13.97 7.1
Yelp 1 174097 1288077 14.79 0.11 0.18 15.79 9.03
Gowalla [41] 196591 950327 9.66 0.23 0 31.71 3.41
Flixster [42] 2523386 7918801 6.27 0.08 0.11 35.07 2.73

Biological Yeast [43] 1846 2203 2.38 0.06 0.04 2.72 0.28
PDZBase [44] 212 242 2.28 0 0 2.33 -0.08

Infrastructure
Rooad (PA.) [40] 1088092 1541898 2.83 0.04 0.26 1.12 0.13
Power grid [17] 4941 6594 2.66 0.08 0.18 1.45 0.29
Road (CA.) [40] 1965206 2776607 2.82 0.04 0.99 13.86 -2.35

Animal
Dolphin [45] 61 159 5.16 0.26 0.24 1.32 1.17
Zebra [46] 27 111 8.22 0.87 0.81 1.33 3.51
Kangaroo [47] 17 91 10.7 0.82 0.11 1.13 1.88

For any ring lattice in which N � 〈k〉2, we can approximately
have S = (3〈k〉 − 6)/4. Therefore, as shown by Fig. 4(e), the
similarity intensity of ring lattice is closely correlated with the
average degree, but generally irrelevant to the network size.

We further examine the similarity intensity and degree het-
erogeneity of empirical networks. Table 1 shows the statistics
of fifteen studied real networks including social networks, bio-
logical networks, infrastructure networks, animal networks. For
each of the empirical networks, we calculate its similarity inten-
sity S and degree heterogeneity H and the results are shown in
Fig. 5. Additionally, we also compare the empirical networks
with artificial networks with controlled network size and total
links as shown in Table 2.

The biological networks are shown to have high degree het-
erogeneity and neutral similarity intensity which is very sim-
ilar to the BA network. The infrastructure networks show
different results on the degree heterogeneity that, while the
road network in Pennsylvania as well as the power grid are
less heterogeneous, the road network in California has ex-
tremely heterogeneous degrees. On the other hand, the sim-
ilarity of infrastructure networks are neutrally or even nega-
tively shaping the structure. Actually, the wiring patterns of
such networks are constructed according to the geographical
locations of the vertices (intersections in road network, gener-
ators/transformers/substations in power grid) which can be re-
gard as location similarity. However, to achieve high efficiency,
vertices in infrastructure networks, even geographically near to
each other, would not share many common neighbours. Espe-

cially in road networks, the vertices (intersections) are mostly
organised in squares resulting in second-order common neigh-
bours rather than in triangles resulting in direct common neigh-
bours. For the animal networks, the features are opposite to the
biological networks and BA networks in terms of the degree
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Fig. 5: (Color online.) The similarity intensity S versus the degree heterogene-
ity H of networks. While large H means the vertex degrees are very different
(heterogeneous) from each other, the lower-limit H = 1 represents the case
where each vertex has the same degree kv = 〈k〉,∀v. Large (positive) S indi-
cates the edges tend to establish between similar vertices while small (negative)
values suggest the edges tend to connect dissimilar vertices.
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Table 2: Comparison of degree heterogeneity H and similarity intensity S between empirical networks and artificial networks including ER, BA and Ring Lattice.
For each empirical network, the artificial networks are generated according to its network size N. For ER networks, the probability of each vertex pair connecting
each other is set to be p = 2M(N − 1)/N. For BA networks, we set m0 = 2M/N + 1 and m = M/N. As to the ring lattices, we let each vertex to connect 2M/N
nearest neighbours.

Degree Heterogeneity H Similarity Intensity S
Empirical ER BA Ring Empirical ER BA Ring

Social

Coauthorship 3.09 1.02 2.46 1 19.65 0 0 29.91
Facebook 3.43 1.02 2.71 1 12.36 0 0 35.96
Trust (PGP) 4.14 1.12 2.96 1 6.58 0 -0.03 4.49
Email 13.97 1.04 2.87 1 7.1 -0.01 -0.02 13.49
Yelp 15.79 1.03 3.17 1 9.03 0 -0.01 19.49
Gowalla 31.71 1.05 3.44 1 3.41 0 -0.01 11.99
Flixster 35.07 1.11 4.93 1 2.73 0 -0.01 2.99

Biological Yeast 2.72 1.08 3.03 1 0.28 0 -0.03 -0.01
PDZBase 2.33 1.14 2.33 1 -0.08 0 -0.07 -0.01

Infrastructure
Rooad (PA.) 1.12 0.99 6.62 1 0.13 -0.01 -0.01 0
Power grid 1.45 1.13 4.41 1 0.29 0 -0.03 -0.01
Road (CA.) 13.86 1.13 8.19 1 -2.35 0 -0.01 0

Animal
Dolphin 1.32 1.05 2.24 1 1.17 0 -0.45 1.38
Zebra 1.33 1.03 1.33 1 3.51 0 0.55 2.91
Kangaroo 1.13 1.19 1.09 1 1.88 0 1.66 1.71

heterogeneity and similarity intensity. Though with low degree
heterogeneity, the similarity is shown to be playing a part in the
interactions among animals. However, the sizes of the studied
animal networks are quite small which may cause influences on
their similarity intensities and degree heterogeneities.

Particularly, we address the social networks which are shown
to be a special class of networks in terms of the degree het-
erogeneity and similarity intensity. The social networks have
very heterogeneous degree distributions, normally more hetero-
geneous than the BA networks. While BA model can generate a
power-law degree distribution with slope of 3, social networks
in many cases may have much smaller slopes for the degree dis-
tribution leading to higher heterogeneities. A more interesting
feature of social networks is the high similarity intensity. One
can find that, the similarity intensities of social networks are
sometimes similar or even higher (Trust network) than the ring
lattice. In other words, for social networks, each connected ver-
tex pair shares much more common neighbours than the random
case on average. Such result suggests the extreme strong gov-
ernance of similarity in human interactions. Social networks
with both high degree heterogeneity and high similarity inten-
sity, stand alone as a special class of networks in comparison
to others. More importantly, one may find from Table 2 that
the ER, BA and ring lattice cannot well describe the social net-
works in terms of the degree heterogeneity and similarity inten-
sity simultaneously.

4. Conclusions and Discussion

Networked systems, though with high complexity, always
show regularities. Mining the vertex similarities from the
wiring pattens is of significance for understanding the structure

and evolution of networks. In this paper, we theoretically stud-
ied the expected number of common neighbours between two
vertices in random networks. Thereby, a new symmetrical sim-
ilarity index was proposed by comparing the observed number
of common neighbours with the expected number. We further
defined the similarity intensity of networks and studied fifteen
empirical networks as well as artificial network models. It was
shown that, the social networks in general have high degree het-
erogeneities and are largely governed by similarity.

One of the major applications of similarity index is the link
prediction. By evaluating the similarity between each uncon-
nected vertex pair in a network, the most similar vertex pairs
are considered to be the predictions of emerging edges. How-
ever, the hubs naturally yield more new edges than those poorly
connected vertices. As a consequence, the similarity indices
with emphasis on the high-degree vertices are found to be gen-
erally accurate for link predictions. Even the product of the
vertex degrees kxky can be an accurate predictor of new links
in some networks [29, 48]. Given the fact that the evolution
of most real networks are normally driven by multiple mech-
anisms including preferential attachment and similarity-based
attachment [20, 49, 50], to distinguish and separately predict
links that resulted from different mechanisms is a better way to
further improve the prediction accuracy and understand the evo-
lution pattern. The proposed similarity index distinguishing the
similarity-based common neighbours and the expected com-
mon neighbours, may provide new perspectives for the link pre-
diction of networks with multiple mechanisms. The present pa-
per defined the similarity intensity S to explore the governance
of similarity on the structure of complex networks. This may
be an indicator for the selection of link prediction method that
whether to use a similarity-based method or a popularity-based
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one. While similarity measures are found to have different per-
formances when predicting links in different networks, the sim-
ilarity intensity and the degree heterogeneity of the given net-
work may be able to explain the different behaviours.

A number of artificial network models have been developed
over the years, and many studies have been carried out based on
these models to try to make implications for the understanding
and control of the dynamics in real networks. But only if the
network models can reveal the structural features of real net-
works, these theoretical studies could contribute to the knowl-
edge of real-world systems. The examination of similarity in-
tensity in this study provides a method to match the real net-
works with network models so that we can pick up the appro-
priate model according to the match to study with to make con-
tributions to the target networks.
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[36] Erdös P. and Rényi A. On the evolution of random graphs. Publ. Math.
Inst. Hung. Acad. Sci., 5 (1960) 17.

[37] Newman M. E. J. Assortative mixing in networks. Phys. Rev. Lett., 89
(2002), 208701.

[38] Leskovec J., Kleinberg J., and Faloutsos C. Graph evolution: Densifica-
tion and shrinking diameters. ACM Transactions on Knowledge Discovery
from Data (TKDD), 1 (2007) 2.

[39] Viswanath B., Mislove A., Cha M., and Gummadi K. P. On the evolution
of user interaction in facebook. in WOSN’09 (ACM, New York, NY, USA,
2009), pp. 37-42.

[40] Leskovec J., Lang K. J., Dasgupta A., and Mahoney M. W. Community
structure in large networks: Natural cluster sizes and the absence of large
well-defined clusters. Internet Mathmatics, 6 (2009) 29.

[41] Cho, E., Myers, S. A., and Leskovec, J. Friendship and mobility: user
movement in location-based social networks. In: Proceedings of the 17th
ACM SIGKDD international conference on Knowledge discovery and
data mining. (ACM, San Diego, California, USA, 2011) pp. 1082-1090.

[42] Zafarani, R., and Liu, H. Social computing data repository at ASU, in
School of Computing, Informatics and Decision Systems Engineering
(Arizona State University, 2009), http://socialcomputing.asu.edu.

[43] Stumpf M. P. H., Wiuf C., and May R. M. Subnets of scale-free networks
are not scale-free: sampling properties of networks. Proc. Natl. Acad. Sci.
USA, 102 (2005) 4221.

[44] Beuming T., Skrabanek L., Niv M. Y., Mukherjee P., and Weinstein
H. PDZBase: A protein-protein interaction database for PDZ-domains.
Bioinformatics, 21(6) (2005) 827.

[45] Lusseau D., Schneider K., Boisseau O. J., Haase, P. Slooten E., and Daw-
son S. M., Behav. Ecol. Sociobiol., 54 (2003) 396.

[46] Sundaresan S. R., Fischhoff I. R., Dushoff J., and Rubenstein D. I. The
bottlenose dolphin community of Doubtful Sound features a large propor-
tion of long-lasting associations. Oecologia, 151 (2007) 140.

[47] Grant T. R. Dominance and association among members of a captive and

7



a free-ranging group of grey kangaroos (Macropus giganteus). Anim. Be-
hav., 21 (1973) 449.

[48] Cannistraci C. V., Alanis-Lobato G., and Ravasi T. From link-prediction
in brain connectomes and protein interactomes to the local-community-
paradigm in complex networks. Sci. Rep., 3 (2013) 1613.

[49] Zhang Q.-M., Xu X.-K., Zhu Y.-X., and Zhou T. Measuring multiple evo-
lution mechanisms of complex networks. Sci. Rep., 5 (2015) 10350.

[50] Zhang J. Uncovering mechanisms of co-authorship evolution by
multirelations-based link prediction. Inform. Process. Manag., 53 (2017)
42.

8


