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Abstract. The assimilation of satellite-based water level ob-
servations (WLOs) into 2-D hydrodynamic models can keep
flood forecasts on track or be used for reanalysis to obtain
improved assessments of previous flood footprints. In either
case, satellites provide spatially dense observation fields, but
with spatially correlated errors. To date, assimilation meth-
ods in flood forecasting either incorrectly neglect the spa-
tial correlation in the observation errors or, in the best of
cases, deal with it by thinning methods. These thinning meth-
ods result in a sparse set of observations whose error cor-
relations are assumed to be negligible. Here, with a case
study, we show that the assimilation diagnostics that make
use of statistical averages of observation-minus-background
and observation-minus-analysis residuals are useful to es-
timate error correlations in WLOs. The average estimated
correlation length scale of 7 km is longer than the expected
value of 250 m. Furthermore, the correlations do not decrease
monotonically; this unexpected behaviour is shown to be the
result of assimilating some anomalous observations. Accu-
rate estimates of the observation error statistics can be used
to support quality control protocols and provide insight into
which observations it is most beneficial to assimilate. There-
fore, the understanding gained in this paper will contribute
towards the correct assimilation of denser datasets.

1 Introduction

In data assimilation (DA), observations are combined with
numerical model output, known as the background, to pro-
vide an accurate description of the current state, known as
the analysis. In DA the contributions from the background
and observations are weighted according to their relative un-
certainty. The observation error statistics are the sum of the
instrument error and representation error (Janjić et al., 2017).
The error of representation arises due to the mismatch in the
observation and its model equivalent, and it is often corre-
lated and state dependent (Waller et al., 2014; Hodyss and
Nichols, 2015). In DA, observation error statistics are typ-
ically assumed to be uncorrelated. The data density is re-
duced in order to satisfy this assumption (Lorenc, 1981). Yet
having adequate estimates of these uncertainties is crucial in
order to obtain an accurate analysis. Since the true state of
the system is not known, the exact observation errors and
their statistics can not be calculated. Instead observation un-
certainties must be estimated statistically (e.g. Hollingsworth
and Lönnberg, 1986; Ueno and Nakamura, 2016). Desroziers
et al. (2005) provide a diagnostic to estimate observation un-
certainties using the statistical average of observation-minus-
background and observation-minus-analysis residuals. The
diagnostic has been applied to operational numerical weather
prediction (NWP) settings to estimate observation uncertain-
ties (Stewart et al., 2014; Waller et al., 2016a, c; Cordoba
et al., 2017). The use of these estimated statistics in NWP re-
sults in a more accurate analysis and improvements in objec-

Published by Copernicus Publications on behalf of the European Geosciences Union.



3984 J. A. Waller et al.: Analysis of observation uncertainty for flood assimilation and forecasting

tively measured forecast skill (Weston et al., 2014; Bormann
et al., 2016; Campbell et al., 2017).

The development of DA systems has largely been driven
by its use in NWP, but the methodologies are applicable
to any system that can be modelled and observed. There
have been recent advances in real-time 2-D hydrodynamic
modelling and the acquisition and processing of relevant re-
mote sensing observations (earth observations, EOs) (Raclot,
2006; Andreadis et al., 2007; Schumann et al., 2007, 2011;
Mason et al., 2010a, 2012a, 2014). Consequently, several
studies have shown the benefit of applying DA to operational
flood forecasting (Durand et al., 2008, 2014; Montanari et al.,
2009; Roux and Dartus, 2008; Neal et al., 2009; Matgen
et al., 2010; Mason et al., 2010b; Giustarini et al., 2011;
García-Pintado et al., 2013, 2015). Grimaldi et al. (2016) re-
view the potential of EOs for inundation mapping and water
level estimation and their use for calibration, validation and
constraint of real-time hydraulic flood forecasting models.

A predominant EO technique to obtain water level ob-
servations (WLOs) is synthetic-aperture radar (SAR). SAR
provides high-resolution observations of radar backscatter
which, after processing, serve to delineate the flood ex-
tent. Then, the intersection of the flood extent with a high-
resolution lidar digital terrain model is used to obtain the
WLOs. The resulting WLOs are discontinuous but locally
dense in space; consequently, the errors in the observations
may be highly correlated. However, the current practice when
assimilating WLOs is to neglect the error correlations. To
make the assumption of uncorrelated errors valid the cur-
rent approach is to thin the data. Hence, in hydrology, one
scenario that would benefit from improved understanding
of the observation uncertainties is the assimilation of the
satellite-derived water level observations (WLOs) for either
operational flood forecast or hindcast analyses (Mason et al.,
2010a; García-Pintado et al., 2013). A more detailed under-
standing of the observation uncertainties would be highly
useful as understanding the error statistics may permit more
observations to be included in the assimilation, which should
allow the information from dense observation sets to be
fully exploited. Additionally, accurate estimates of observa-
tion uncertainties can inform the thinning strategy and sug-
gest which observations may benefit the assimilation most
(Fowler et al., 2018). There is a clear potential to improve
the flood forecast if all the SAR WLOs could be assimilated
in an appropriate way.

In this article we use the diagnostic of Desroziers et al.
(2005), described in Sect. 2, to estimate the observation er-
ror statistics for SAR WLOs that are assimilated using a
local ensemble transform Kalman filter (LETKF) into the
LISFLOOD-FP 2-D hydrodynamic model. For this study, we
use a sequence of real SAR overpasses in a flood event that
occurred in November 2012 in SW England. A description of
the SAR WLOs and experimental design are given in Sect. 3.
Results are discussed in Sect. 4. First, we estimate average
WLO error statistics across the entire domain for the dura-

tion of the flood event. It will be seen later that these glob-
ally estimated error statistics show an anomalous pattern. To
determine the cause of these anomalous results we consider
if observations in different sub-domains have different error
characteristics. We also consider if the error statistics differ
for different phases of the flood event. From the results we
infer that the anomalous pattern is not related to the distri-
bution of observations over the domain but to observations
during the later stages of the flood. To the best of our knowl-
edge this is the first time that the diagnostics have been ap-
plied to estimate error statistics for hydrological data assimi-
lation. Importantly, we show that the diagnostic of Desroziers
et al. (2005) can be used to identify anomalous observation
datasets that are not suitable for assimilation.

2 The diagnostic of Desroziers et al. (2005)

Data assimilation is a technique used to provide the best es-
timate, the analysis, of the current state of a dynamical sys-
tem. The analysis is denoted xa

∈RNm
. The analysis is de-

termined by combining the background xb
∈RNm

, a model
prediction, with observations, y ∈RNp

, weighted by their re-
spective error statistics. Here the dimensions of the obser-
vation and model state vectors are denoted by Np and Nm,
respectively. To compare observations and background it is
necessary to project the background into observation space
using the observation operator,H : RNm

→RNp
, which may

be non-linear. The analysis can be used to initialize a forecast
which in turn provides a background for the next assimila-
tion.

In Desroziers et al. (2005) the analysis is calculated using

xa
= xb

+BHT
(

HBHT
+R

)−1(
y−H

(
xb
))
,

= xb
+Kdo

b, (1)

where R∈RNp
×Np

and B∈RNm
×Nm

are the observation
and background error covariance matrices, K is the Kalman
gain matrix and H is defined as the observation operator lin-
earized about the background state. The observation-minus-
background residuals do

b= y−H(xb), also known as the
innovations, are assumed to be unbiased. Hence any bias
should be removed before assimilation (Dee, 2005).

The observation error covariance matrix can be estimated
using the observation-minus-background, do

b= y−H(xb),
and observation-minus-analysis, do

a = y−H(xa), residuals
(Desroziers et al., 2005). Assuming that the observation and
background errors are mutually uncorrelated, the statistical
expectation of the product of the analysis and background
residuals is

E
[
do

ad
oT
b

]
≈ R. (2)

As the resulting matrix is estimated statistically it will not be
symmetric. Therefore, it must be symmetrized before it can
be used in a data assimilation scheme.
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The form of the diagnostic in Eq. (2) is not suitable to
calculate observation error statistics when each assimila-
tion cycle uses different observations. Instead components
of the background and analysis residuals must be paired and
binned, with the binning dependent on the type of correla-
tion being estimated. For example, when calculating spatial
correlations the bins may depend on the distance between ob-
servations, whereas for temporal correlations the bins would
depend on the time between observations. For each bin, β,
the covariance, cov(β), is then computed individually using

cov(β)=
1
Nβ

Nβ∑
k=1

(
doa
i dob

j

)
k
−

1
Nβ

Nβ∑
k=1

(
doa
i

)
k

1
Nβ

Nβ∑
k=1

(
dob
j

)
k
, (3)

where (doa
i dob

j )k is the kth pair of elements of do
a and do

b
in bin β, and Nβ is the number of residual pairs in bin β.
It is assumed that the observation-minus-background and
observation-minus-analysis residuals are unbiased, but this
is not guaranteed. Hence the second term of Eq. (3) ensures
that the computation of the observation error statistics is not
affected by bias (Waller et al., 2016a). To calculate the spa-
tial correlation, the covariance in each bin, cov(β), is divided
by the estimated variance (the covariance at zero distance,
cov(0)).

The diagnostic in Eqs. (2) and (3) only gives a correct esti-
mate of the observation error uncertainties if the error statis-
tics used in the assimilation are exact. Even if the assumed
statistics are not exact the diagnostic can still provide useful
information about the true observation error statistics (Waller
et al., 2016b; Ménard, 2016). Further limitations include the
use of an ergodic assumption in order to obtain sufficient
samples (Todling, 2015) and the assumption that the obser-
vation operator is linear (Terasaki and Miyoshi, 2014).

One further issue is that the standard diagnostic is derived
assuming that the analysis is calculated using minimum vari-
ance linear statistical estimation. If local ensemble DA is
used to determine the analysis, the diagnostic does not result
in a correct estimate of the observation uncertainties. How-
ever, by using a modified version of the diagnostic some of
the observation error statistics may be estimated. It is possi-
ble to estimate the error correlations between two observa-
tions if the observation operator that determines the model
equivalent of observation yi acts only on states that have
been updated using the observation yj (Waller et al., 2017).
Since we use a LETKF assimilation scheme in this study, we
must take this into account when estimating observation er-
ror statistics for the WLOs.

3 Methodology

In this article we estimate the observation error statistics for
SAR WLOs that are assimilated using a LETKF into the
LISFLOOD-FP 2-D hydrodynamic model. This study makes
use of the observation, model and assimilation system de-
scribed in García-Pintado et al. (2015). We direct the reader
to this reference, and references therein (particularly Mason
et al., 2012a, b), for a thorough description of the derivation
of WLOs and the assimilation design. Here we summarize
the methodology and provide a description of the data used
specifically in this study.

3.1 Derivation of WLOs

The original observations used in the deviation of WLOs are
obtained using SAR which observes the surface backscatter.
In a SAR image flood water appears dark so long as the sur-
face water turbulence is insignificant. Therefore, to obtain
flood extent, the pixels in a SAR image are grouped into ho-
mogeneous regions. A mean backscatter value is calculated
for each region and if this value is below a given threshold,
the region is classified as flooded. The threshold is deter-
mined by using training data from “flood” and “non-flood”
regions. This initial estimate of flood extent is then refined
by, for example, (1) correcting for any high backscatter that
is a result of vegetation either within the flooded region or
at the flood edge; (2) correcting for high backscatter near
flooded areas that is a result of water with a rough surface;
(3) performing a “nearest neighbour” check, where any local
flood height that is significantly larger than those nearby is
reclassified as non-flooded.

To provide the WLOs the refined flood extent is intersected
with high-resolution digital elevation model (DEM). In order
to improve the accuracy of the WLOs, they are only calcu-
lated if the slope in the DEM is sufficiently shallow. A fur-
ther refinement takes into account, for example, the emergent
vegetation at the flood edge.

The WLO derivation process results in a large number of
WLOs that exist in clusters. It is expected that many of the
observations in a cluster will be highly correlated and hence
not contribute independent information. At this stage in the
processing, Mason et al. (2012a) thin the WLOs to reduce
spatial correlation. However, we postpone this step until after
the quality control procedures for the data assimilation have
been performed.

3.2 Model and data assimilation

The observations are assimilated into a 75 m resolution
LISFLOOD-FP flood simulation model (Bates and Roo,
2000) using a LETKF (Hunt et al., 2007). Due to the formula-
tion with the diagnostic described in Sect. 2, the localization
in the LETKF is set in standard 2-D Euclidean space rather
than the physically based distance along the river channel
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described in García-Pintado et al. (2015), which would re-
quire a further adaptation of the diagnostic calculation. The
localization radius is set using a compactly supported fifth-
order piecewise rational function (Gaspari and Cohn, 1999,
Eq. 4.10) with length scale 20 km.

To compare the modelled field with the observed quantity
it is necessary to define an observation operator that maps
from model to observation space. In this study we use the
“nearest wet pixel” approach described in García-Pintado
et al. (2013). The mapping in the nearest wet pixel approach
is dependent on the inundation status at the model location.
If at an observation location the model is flooded, the model
equivalent of the observation is simply the water level pre-
dicted by the model. However, if the model is dry at the ob-
servation location the model equivalent of the observation is
taken to be the model water level at the wet pixel nearest to
the observation location.

3.3 Quality control and data thinning

Data assimilation techniques can lose accuracy if presented
with an observation that is grossly inconsistent with the
model state (Vanden-Eijnden and Weare, 2013). Thus, before
being assimilated, the WLOs are subjected to several quality
control (QC) protocols according to the physical characteris-
tics of the terrain and land cover. An additional background
check is performed where observations that result in anoma-
lous observation-minus-background residuals are discarded.
The QC procedures result in dense cluster of discontinuous
observations in which both the observations and their errors
may be highly correlated. A direct assimilation of this dense
dataset would lead to an analysis biased towards the obser-
vations and, for covariance-evolving methods (e.g. ensemble
Kalman filters), an over-reduced posterior covariance and un-
stable long-term forecast/assimilation cycles. Thus, to reduce
the number of correlated observations and to avoid dealing
with the spatial correlation in the assimilation, the current
approach is to further thin the data (as is standard in other
assimilation applications such as NWP and oceanography;
Dando et al., 2007; Li et al., 2010). The applied thinning, as
described in Mason et al. (2012a), uses a top down cluster-
ing approach in which principal component analysis is used
to select observations that have the highest information con-
tent. The spatial autocorrelation of the resulting observations
is calculated, and if any significant correlation exists the thin-
ning procedure is applied iteratively until no significant cor-
relation remains. Typically the thinned dataset contains ap-
proximately 1 % of the pre-thinned observations. The mea-
sured standard deviation for the thinned dataset can be cal-
culated by fitting a plane by linear regression to the WLOs.
The variance of the difference between the WLO and planar
surface can be used as an estimate of the observation error
variance. This approach is considered adequate for this case
study as the floodplain in the downstream observed areas is
reasonably flat.

3.4 Potential observation error sources

In data assimilation the observation uncertainty has contri-
butions from both measurement errors and representation er-
rors. The representation error arises due to the difference be-
tween an actual observation and the modelled representation
of an observation; this difference can be a result of the fol-
lowing:

– Pre-processing/QC errors are errors introduced during
the observation pre-processing or quality control proce-
dures.

– Observation operator errors are errors that arise due to
approximations in the mapping between model and ob-
servation space.

– Errors due to unresolved scales and processes are er-
rors that result from the mismatch between the scales
represented in the model field and the observations.

For the WLOs it is clear that a pre-processing error will
exist as there is potential for errors to be introduced in the
derivation of the WLOs. For example if the water surface is
rough it may be assumed that the pixel is dry; as a result the
flood extent would be incorrect and hence an error would be
introduced in the WLO. For nearby pixels it is possible that
there will be similar errors in the derivation process, thereby
introducing correlated observation errors. The procedures in
Mason et al. (2012a) provide an estimated standard deviation
for the WLO pre-processing error and thin the data to ensure
that the pre-processing error is uncorrelated. However, we
note that in this study we use a denser dataset than is typically
produced. Therefore, there is potential for some correlated
pre-processing error to remain.

A potential source of correlated error for WLOs is the ob-
servation operator error. As described in Sect. 3.2 the obser-
vation operator uses the “nearest wet pixel” approach. For
observations in locations where the model is flooded it is ex-
pected that there is minimal error in the observation operator
(since the corresponding water level is predicated directly by
the model). However, if the observation location does not co-
incide with a flooded model pixel it is necessary to find the
nearest wet pixel in the model. It is possible that in locating
the nearest wet pixel and extrapolating information we intro-
duce correlated error.

The error due to unresolved scales and processes is also
a possible source of observation error correlations. Although
in this case the model is of relatively high resolution com-
pared to the observation resolution, there are still scales that
are unresolved. Previous studies that have considered these
scale mismatch errors have found that they are typically cor-
related (Janjić and Cohn, 2006; Waller et al., 2014; Hodyss
and Nichols, 2015).
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3.5 Calculation of WLO error statistics

We estimate observation uncertainties for observations from
a real flood event that occurred in West England on an area
of the lower Severn and Avon rivers in November 2012
(Fig. 1a). The WLOs were extracted from a sequence of
seven satellite SAR observations (acquired by the COSMO-
SkyMed constellation) using the method described in Mason
et al. (2012a). During the flood event the WLOs are available
daily for the period 27 November to 4 December 2012 (with
the exception of 3 December). Observations on the first day
illustrate the flood levels just before the flood peak in the Sev-
ern. On 30 November the river went back in bank; however, a
substantial amount of water remained on the floodplain (see
Fig. 2 in García-Pintado et al., 2015).

Before being assimilated, the WLOs are subject to the QC
and thinning procedures described in Sect. 3.3. When used
in previous studies such as García-Pintado et al. (2015) the
dataset has been thinned to a separation distance of 250 m,
at which the observation errors are assumed uncorrelated.
However, in this article a denser observation set (although
still sparse) with thinning distance of 125 m is used, in which
some spatial correlation should remain. The location of the
observations is plotted in Fig. 1b.

We apply the diagnostic of Desroziers et al. (2005) to
the observation-minus-background and observation-minus-
analysis residuals resulting from the flood assimilation. We
first use all available data to calculate the average horizon-
tal error variance and correlations. We then consider if the
observations of the flood on the Severn are similar to the er-
ror statistics for the Avon. Finally we consider if the error
statistics vary for different periods of the flood. For all cases
the observation error correlations are calculated at a 1 km bin
spacing. As we use an LETKF we must use a modified form
of the diagnostic (see Sect. 2). As a result we are not able to
calculate observation error correlations for observation pairs
with a separation distance greater than 19 km. When evaluat-
ing the correlations we assume that they become insignificant
when they drop below 0.2 (Liu and Rabier, 2002).

For this assimilation system we assume that the ensemble
background error covariance matrix gives a reasonable es-
timate of the true background error statistics. The assumed
standard deviation for the WLOs is 59 cm; this is calculated
as described in Sect. 3.3. The value accounts only for the pre-
processing error, and not for any error introduced by the ap-
proximations in the observation operator or scale mismatch
errors and, therefore, may be an underestimate of the true
error standard deviation.

As is typical for most DA systems, the observation errors
are assumed uncorrelated. With these assumed error statistics
the theoretical work of Waller et al. (2016b) suggests that
the observation error statistics estimated using the diagnostic
will have the following:

– an underestimated standard deviation

– an underestimated correlation length scale.

Therefore, we would expect the true standard deviations and
length scales to be larger than those we estimate using the
diagnostic.

4 Results

4.1 Average observation error statistics

We first estimate average horizontal error covariances across
the entire domain for the duration of the flood event. We plot
in Fig. 2 the estimated correlation, along with the number of
samples used, for the WLOs.

The estimated statistics give a standard deviation of 54 cm.
This is slightly lower that the assumed error standard devia-
tion of 59 cm. Following the theory of Waller et al. (2016b)
we expect the estimated standard deviation to be an under-
estimate of the true observation error standard deviation, and
hence the results suggest that the assumed standard deviation
is likely set at the correct level.

Our results show that the correlations become insignificant
(< 0.2) at approximately 8 km, but there is some unexpected
behaviour before 8 km. The correlations drop smoothly be-
tween 0 and 4 km then increase again up to 6 km before
dropping off. This behaviour is seen for a variety of different
binning widths (not shown). We investigate the cause of this
“local maximum” in the estimated correlations in Sects. 4.2
and 4.3. In general we find that the correlation distance is
much longer than the thinning distance of 125 m, which was
chosen to try to ensure that the observation errors are un-
correlated. Furthermore, theoretical results of Waller et al.
(2016b) suggest that, with this design of assimilation experi-
ment, the correlation length scales will be underestimated.

4.2 Correlations in different parts of the domain

It is possible that the local maximum in the correlations is a
result of observations on different tributaries of the river. To
test this hypothesis we split the domain in two (as shown in
Fig. 1): the western domain covering the river Severn and
eastern domain covering the river Avon. We plot the esti-
mated correlations, along with the number of samples used
for the SAR WLOs, for the western part of the domain in
Fig. 3 and for the eastern part of the domain in Fig. 4. We
note that there are fewer observations in the eastern domain.
This results in fewer available samples for the calculation in
Eq. (3) and hence the results are subject to greater sampling
error.

From Figs. 3 and 4 we see that the “local maximum” in
the correlations is still present in both parts of the domain. In
the eastern domain it is very pronounced. This suggests that
the cause of the increase in correlations between 4 and 6 km
is not observations on different tributaries of the river.

www.hydrol-earth-syst-sci.net/22/3983/2018/ Hydrol. Earth Syst. Sci., 22, 3983–3992, 2018
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Figure 1. (a) Flood model domain where the colour bar denotes the height in metres and (b) position of SAR WLOs on OSGB 1936
British National Grid projection; coordinates in metres. For (b) the line denotes the west/east domain split discussed in Sect. 4.2, crosses:
27–29 November, circles: 30 November and 1 December, squares: 2 and 4 December.
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Figure 2. Estimated SAR WLO error correlations (black line) and
number of samples (bars) used for the calculation. Estimated error
standard deviation is 54 cm.

4.3 Correlations at different times

We next consider if the correlation structure changes over
time. We plot in Figs. 5, 6 and 7 the correlations calculated
for the first three days, the second two days and the final
two days respectively. At the beginning of the flood period,
the observations have similar standard deviations to those es-
timated for the entire flood event; however, the correlation
length scale is short, approximately 2 km.

During the middle of the flood event the observation error
standard deviation decreases and the correlation length scale
increases slightly. For the final two days the river is back in
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Figure 3. Estimated SAR WLO error correlations (black line) and
number of samples (bars) used (bin width= 1 km), west domain.
Estimated error standard deviation is 58 cm.

bank; for this period the standard deviation is largest, as is the
correlation length scale, which is approximately 8 km. It is
also in this final period where the “local maximum” appears
in the correlations.

Figure 7 shows the estimated error statistics for the reces-
sion stages for the flood. During this period a high proportion
of the observations were in areas which remained flooded but
were disconnected from the main river flow. For this same
sequence of SAR overpasses García-Pintado et al. (2015)
showed that the assimilation of the last three overpasses was
still able to exploit the background ensemble covariances to
pass some of the information from these WLOs to the main
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Figure 4. Estimated SAR WLO error correlations (black line) and
number of samples (bars) used (bin width= 1 km), east domain. Es-
timated error standard deviation is 43 cm.
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Figure 5. Estimated SAR WLO error correlations (black line) and
number of samples (bars) used (bin width= 1 km), 27–29 Novem-
ber. Estimated error standard deviation is 53 cm.

flow. However, two effects became evident: (a) the assimi-
lation increments were of a smaller magnitude in these last
stages, and (b) the corrections to the flow in these last stages
were gradually more short-lived. This was a result of the re-
duced information content in these WLOs regarding the in-
flow errors upstream, which in the end control the flood and
flow evolution. Here the Desroziers et al. (2005) diagnostic
has been able to identify a corresponding anomalous struc-
ture in the WLO errors at these last stages. The correlation
structure shown in Fig. 7 indicates that apart from the longer
correlation errors, which can be expected from the smoother
flood dynamics at the end of the flood, an increase in the cor-
relation appears at ∼ 6 km. The increasing disconnection of
the WLOs in the flood plain from the main flow appears to
be the cause for the local maximum in the estimated corre-
lation structure. However, further work is required to deter-
mine why the “local maximum” in the estimated correlation
function appears at 6 km.
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Figure 6. Estimated SAR WLO error correlations (black line) and
number of samples (bars) used (bin width= 1 km), 30 November
and 1 December. Estimated error standard deviation is 43 cm.
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Figure 7. Estimated SAR WLO error correlations (black line) and
number of samples (bars) used (bin width= 1 km), 2 and 4 Decem-
ber. Estimated error standard deviation is 57 cm.

5 Conclusions

We have shown that the Desroziers et al. (2005) diagnostic is
a useful tool to identify the error covariance in WLOs from
satellite SAR. Further, the diagnostic has been able, in the
case study, to isolate an unexpected anomaly in the correla-
tion structure, pointing to the applicability limits of the satel-
lite WLOs in the flood plain in the recession stages of the
flood. The diagnostic has been useful in this study for high-
lighting anomalous data. Given its low-cost calculation, we
propose it be customarily calculated in flood forecasts and
hindcast analyses to support the understanding of the obser-
vation errors and to support QC protocols for selection of
adequate observations. However, due to the dependence of
the observation error on the choice of observation operator
and model resolution, results will differ for each individual
user. Therefore, further study may be required to understand
how the diagnostic results can best support QC protocols.

Data availability. The data used in this study are available in
García-Pintado (2018).
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