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Abstract. The recently proposed picture fuzzy set (PFS) is a powerful tool for handling fuzziness and uncertainty. PFS is char-

acterized by a positive membership degree, a neutral membership degree, and a negative membership degree, making it more 

suitable and useful than the intuitionistic fuzzy set (IFS) when dealing with multi-attribute decision making (MADM). The aim 

of this paper is to develop some aggregation operators for fusing picture fuzzy information. Considering the Muirhead mean 

(MM) is an aggregation technology which can consider the interrelationship among all aggregated arguments, we extend MM 

to picture fuzzy context and propose a family of picture fuzzy Muirhead mean operators. In addition, we investigate some 

properties and special cases of the proposed operators. Further, we develop a novel method to MADM in which the attribute 

values take the form of picture fuzzy numbers (PFNs). Finally, a numerical example is provided to illustrate the validity of the 

proposed method. 
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1.  Introduction 

Due to the complexity in real decision-making 

problems, we always face the difficulties of present-

ing attribute values correctly and appropriately. Ac-

tually, as fuzziness and uncertainty do exist in real 

MADM problems, we should consider the issue of 

dealing with both. Recently, more and more scholars 

have paid their attention to tools that can effectively 

handle vagueness and impreciseness. Zadeh’s [1] 

fuzzy set (FS) theory is primary technology for deal-

ing with ambiguity. On the basis of Zadeh’s pioneer-

ing works, decision making with fuzzy information 

have been widely investigated [2-4].Thereafter, At-

anassov [5] extended FS and proposed IFS, con-

structed by a membership degree and a non-

membership degree. Evidently, IFS has higher capac-

ity of modelling the fuzziness of information than 

FS .Since its introduction, it has received much atten-

tion and been widely investigated. For instance, Xu 

[6] extended the ordered weighted averaging operator 

to IFSs and developed a series of intuitionistic fuzzy 

aggregation operators. Qin and Liu [7] proposed 

some intuitionistic fuzzy Maclaurin symmetric mean 

and applied them to MADM. Guo [8] proposed a 

new risk assessment methodology which combines 

IFSs with evidence theory. Cao et al. [9] proposed an 

intuitionistic fuzzy multi-criteria decision-making 

method for supplier selection problem. Wan et al. [10] 

proposed a novel three-phase method for group deci-

sion with interval-valued intuitionistic fuzzy prefer-

ence relations. Wang and Chen [11] proposed a new 

MADM method based on linear programming meth-

odology in interval-valued intuitionistic fuzzy envi-

ronment. In addition, quite a few intuitionistic fuzzy 

aggregation operators have been proposed [12-20]. 

Moreover, due to its advantages and merits, IFSs 

have also been applied in [21, 22], clustering analysis 

[23, 24], and pattern recognition [25, 26].  

Although IFSs have been successfully applied in 

quite a few fields, there exist situations that cannot be 

represented by IFSs. For example, in the case of 

voting, human opinion involving more answers of 

types: yes, abstain, no, and refusal, that cannot be 

represented by IFSs. Thus, to deal with this situation, 

Coung [27] proposed the concept of PFS, which is 



characterized by three information functions, i.e. a 

positive membership degree, a neural membership 

degree and a negative membership degree. Compared 

with IFS, PFS is more powerful and suitable to cope 

with circumstances requiring human opinions 

involving more answers of types: yes, abstain, no, 

refusal. Due to this feature, it has drawn much 

attention since its introduction.  For instance, Le et al. 

[28] proposed a novel fuzzy inference system on 

PFSs called the picture fuzzy inference system to 

enhance inference performance of the traditional 

fuzzy inference system. Le and Pham [29] proposed 

two novel hybrid forecast methods based on the 

picture fuzzy clustering for weather nowcasting. Wei 

[30] proposed some novel similarity measures of 

PFSs and applied them for building material 

recognition and minerals field recognition. When 

dealing with MADM with picture fuzzy information, 

picture fuzzy aggregation operators are needed. 

Recently, some picture fuzzy operators have been 

developed. Garg [31] and Wei [32] proposed a family 

of picture fuzzy averaging and geometric operators 

respectively. 

The above proposed operators can be successfully 

applied to aggregate picture fuzzy numbers. However, 

the main flaw of these operators is that none of them 

can consider the interrelationship among aggregated 

PFNs. In other words, these operators assume that 

attributes are independent, which is somewhat coun-

terintuitive. In most situations, attributes are related 

so that not only the attribute values themselves but 

also the interrelationships among them should be 

taken into account when calculating overall assess-

ment values of alternatives. Basically, Bonferroni 

mean (BM) [33] and the Heronian mean (HM) [34] 

are two powerful aggregation technologies, which 

can capture the interrelationship between arguments. 

Recently BM, HM and their extensions have been 

successfully applied to aggregating intuitionistic 

fuzzy information [35-38], dual hesitant fuzzy infor-

mation [39, 40] and so forth. Nevertheless, both BM 

can only consider the interrelationship between any 

two arguments and fail to capture the interrelation-

ship among multiple arguments. Maclaurin’s [41] 

Maclaurin symmetric mean (MSM) is also an effec-

tive aggregation technology which considers the in-

terrelationship among multiple arguments. However, 

MSM cannot capture the interrelationships among all 

arguments either.  

Recently, Muirhead [42] introduced a powerful 

aggregation operator, called MM. MM is well known 

for its ability of reflecting the interrelationships 

among all input arguments. Moreover, MM has a 

vector of parameters, making the information aggre-

gation process flexible. By assigning different values 

to the vector of parameters, different aggregation 

results can be derived. Additionally, some existing 

operators, such as BM and MSM are special cases of 

MM with respect to the vector of parameter. Recently, 

MM has been utilized to aggregate 2-tuple linguistic 

information [43], intuitionistic fuzzy information 

[44], Pythagorean fuzzy information [45], and hesi-

tant fuzzy linguistic information [46, 47]. Neverthe-

less, to the best of our knowledge, nothing has been 

done about MM in PFSs. Therefore, to take ad-

vantages of MM, we utilize MM to aggregate PFNs 

and propose a family of picture fuzzy aggregation 

operators. Further, we propose a novel approach to 

MADM based on the proposed operators.  

The main motivations and objectives of this are: (1) 

to propose new picture fuzzy aggregation operators 

based on MM; (2) to propose a novel approach to 

MADM in which attribute values take the form of 

PFNs. The rest of the paper is organized as follows. 

Section 2 recalls some relevant concepts. Section 3 

proposes some picture fuzzy Muirhead mean opera-

tors with their properties. Some desirable properties 

and special cases are also studied. Section 4 intro-

duces a novel method to MADM with picture fuzzy 

sets based on the proposed aggregation operators. 

Section 5 provides an example to illustrate the validi-

ty of the proposed method. 

2.  Basic concepts 

This section briefly describes s some concepts 

about PFS and MM. 

2.1.  Picture fuzzy set 

Definition 1. [27] Let X be an ordinary fixed set, a 

PFS A defined on X is expressed as follows: 

      , , ,A A AA x x x v x x X   ,        (1) 

where  A x ,  A x and  Av x denote the positive 

membership, neutral membership and negative mem-

bership degrees respectively, satisfying    0,1A x  , 

   0,1A x  ,    0,1Av x   and 

     0 1A A Ax x v x     . 

Then         1A A A Ax x x v x      is called as 

the refusal membership of x in A. For convenience, 

 , ,v     is called as a PFN by Wei [32].  



In addition, Wei [32] gave some operations for 

PFNs. 

Definition 2. [32] Let  , ,v      and 

 , ,v      be two PFNs,  be a positive real 

number. 

Then 

(1)  , ,v v                  , 

(2)  , ,v v v v                      ,   

(3)   1 1 , ,v
  

       , 

(4)     ,1 1 ,1 1 v
  

         . 

To compare any two PFNs, Wei [32] developed a 

comparison rule for PFNs.  

Definition 3 [32]. Let  , ,v   be a PFN, then the 

score of α is defined as  =S v   , and the accura-

cy of α is defined as  H v     . For any two 

FPNs,  1 1 1 1, ,v    and  2 2 2 2, ,v   . Then 

(1) If    1 2S S  , then 
1 2  ; 

(2) If    1 2S S  , then  

if    1 2H H  , then 
1 2  ; 

if    1 2H H  , then 
1 2  . 

2.2. Muirhead mean  

The MM was proposed by Muirhead [42] for crisp 

numbers. The advantage of MM is that it can consid-

er the interrelationships among all aggregated argu-

ments. 

Definition 4. [42] Let  1,2,...,ia i n be a collection 

of crisp numbers and  1 2= , ,..., n

nP p p p R be a vec-

tor of parameters, then Muirhead mean (MM) opera-

tor is defined as 

    1

1

1 2

1

1
, ,...,

!

n

j j

j

n

n
p pP

n j
S j

MM a a a a
n






 

    
 

 ,     (2) 

where   1,2,...,j j n  is any permutation of 

 1,2,...,n , and Sn is the collection of all permutation 

of  1,2,...,n . 

Moreover, Liu and Li [44] proposed the dual 

Muirhead mean (DMM) operator. 

Definition 5. [44] Let  1,2,...,ia i n be a collection 

of crisp numbers and  1 2= , ,..., n

nP p p p R  be a 

vector of parameters, then DMM operator is defined 

as 

    
1

!

1 2

1

1

1
, ,...,

n

n n
P

n j jn
S j

j

j

DMM a a a p a

p


 



 
  

 



, (3) 

where   1,2,...,j j n  is any permutation of 

 1,2,...,n , and nS is the collection of all permuta-

tions of  1,2,...,n  . 

3. The picture fuzzy Muirhead mean operators 

In this section, we extend MM to picture fuzzy en-

vironment and propose a family of picture fuzzy 

Muirhead mean operators. 

3.1.  The picture fuzzy Muirhead mean operator 

Definition 6. Let   , , 1,2, ,j j j jv j n    K be a 

collection of PFNs, and  1 2= , ,..., n

nP p p p R  be a 

vector of parameters, then the picture fuzzy Muir-

head mean (PFMM) operator is defined as  

    1

1

1 2

1

1
, , ,

!

n

j j

j

n

n
p pp

n j
S j

PFMM
n




    

 

    
 

K , (4) 

where   1,2,...,j j n  is any permutation of 

 1,2,...,n , and is the collection of all permutations 

of  1,2,...,n . 

According to Definition 2, the following theorem 

can be obtained. 

Theorem 1. Let   , , 1,2, ,j j j jv j n    K be a 

collection of PFNs, and  1 2= , ,..., n

nP p p p R  be a 

vector of parameters, then the aggregated value by 

PFMM is still a PFN, and 

 1 2, , ,p

nPFMM    K  

 
1

1
1

!

1

1 1 ,

n

j

jj

n

pn n
p

j
S j




 

 


           
 


      



   1

1
1

!

1

1 1 1 1 ,

n

j
j

j

n

pn np

j
S j




 

 

   
     

  
 

   

   1

1
1

!

1

1 1 1 1

n

j
j

j

n

pn np

j
S j

v






 


             
  



  .   (5) 

Proof. According to the operations for PFNs, we get 

         ,1 1 ,1 1
j j

j j
p p

p p

j j j j
v

   
        

 
, 

and, 

      
1 1 1

,1 1 ,
j

j j

n n n p
p p

j j j

j j j

  
  

  


  


    

  
1

1 1
j

n p

j

j

v





  


 . 

Therefore, 

   
1 1

1 1 ,j j

n n

n n
p p

j j
S j S j

 
 

 
   

  
    

 
     

  
     

1 1

1 1 , 1 1
j j

n n

n np p

j j
S j S j

v
 

 


   

   
       

   
    , 

and, 

 
1

1

!

j

n

n
p

j
S jn





 

   

 

1

!

1

1 1 ,j

n

n n
p

j
S j





 


 

  
 



    

  
1

!

1

1 1 ,
j

n

n np

j
S j





 

 
  

 
   

  
1

!

1

1 1
j

n

n np

j
S j

v


 


  
   

  


  . 

Thus, 

  1

1

1

1

!

n

j j

j

n

n
p p

j
S jn




 

 

    
 

   

 
1

1
1

!

1

1 1 ,

n

j

jj

n

pn n
p

j
S j




 

 


           
 


    

   1

1
1

!

1

1 1 1 1 ,

n

j
j

j

n

pn np

j
S j




 

 

   
     

  
 

   

   1

1
1

!

1

1 1 1 1

n

j
j

j

n

pn np

j
S j

v






 


             
  



  , 

which completes the proof of Theorem 1.  

Example 1.  

Let  1 0.2,0.3,0.4  ,  1 0.1,0.4,0.3  , 

and  3 0.3,0.5,0.1  be three PFNs, then if we uti-

lize PFMM operator to aggregate these three PFNs, 

the calculation process is shown as follows. Here we 

assume P = (1, 2, 3). 

 

PFMM has the ability of capturing the interrela-

tionships among all input PFSs. In addition, PFMM 

makes the information aggregation process flexible. 

By assigning different values to the vector of pa-

rameters, different cases can be derived. In the fol-

lowings, we investigate some special cases of PFMM 

with respect of the vector of parameters P. 

Case 1: if  1,0,...,0P  , then the PFMM operator 

reduces to the following 

   1,0, ,0

1 2

1

1
, , ,

n

n j

j

PFMM
n

   


 
K

K   

 
1

1 1

1 1 1

1 1 , ,
n n n

n
n n

j j j

j j j

v 
  

 
  

 
   , (6) 

which is the picture fuzzy arithmetic averaging (PFA) 

operator. 

Case 2: if  ,0,...,0P  , then the PFMM operator 

reduces to the following 

   
1

,0, ,0

1 2

1

1
, , ,

n

n j

j

PFMM
n



    


 
  
 


K
K  

    
1 1

11

1 1

1 1 ,1 1 1 1 ,
n n nn

j j

j j

 

 
 

   
         
   

 

   
1

1

1

1 1 1 1
n n

j

j

v







 
    
  

 ,  (7) 

which is the generalized picture fuzzy arithmetic av-

eraging (GPFA) operator. 

Case 3: if  1,1,0,0,...,0P   , then the PFMM opera-

tor reduces to the following 



   

1

2

1,1,0,0, ,0

1 2

, 1

1
, , ,

( 1)

n

n i j

i j
i j

PFMM
n n

    




 
 
  
 


K

K

 

 

1

2
1

( 1)

, 1

1 1 ,
n

n n
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which is the picture fuzzy Bonferroni mean (PFBM) 

operator. 
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which is the picture fuzzy Maclaurin symmetric 

mean (PFMSM) operator. 
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which is the picture fuzzy geometric averaging (PFG) 

operator. 
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In the followings, we discuss some desirable prop-

erties of the PFMM operator. 
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 , ,v  . 

Theorem 3. (Monotonicity) Let  , ,j j j jv    

and  , ,  j j j jv      be two sets of PFNs, 

If j j  ,
j j  , j jv v  for all j, then 
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which means   . 



Similarly, we can get   , v v . Thus, ac-

cording to the comparison law for PFNs, we can ob-

tain
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Theorem 4. (Boundedness) Let  , ,j j j jv   , 

1,2, ,j n K  be a collection of PFNs, if 

max j
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3.2. The picture fuzzy weighted Muirhead mean 

operator 

The advantage of the PFMM is that it can consider 

the interrelationship between the aggregated PFNs. 

However, PFMM does not consider the self-

importance of the aggregated arguments. Therefore, 

we introduce picture fuzzy weighted Muirhead mean 

(PFWMM) operator which can take the correspond-

ing weights of aggregated PFNs into consideration. 
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then PPFWMM is called the PFWMM, 

where   1,2,...,j j n  is any permutation of 

 1,2, ,nK , and
nS  is the collection of all permuta-

tion of  1,2, ,nK . 

According to the operations of PFNs, the aggre-

gated value by the PFWMM can be obtained, which 

is shown as Theorem 5. 
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Proof. Because
        

1 1 ,
jnw

j j j
nw



  
   


      

 
 

 
  ,j jnw nw

j j
v 

 
 , we can replace  j

  in Eq. (5) with 

    

1 1
jnw

j




  , and  j

  in Eq. (5) with  
 jnw

j




 , 

and  j
v


 in Eq. (5) with  
 jnw

j
v 


, then we can get Eq. 

(16). 

Because  j
  is a PFN,     j j

nw
 

 is also a PFN. 

By Eq. (5), we know  1 2, ,...,P

nPFWMM     is a 

PFN. 

Flowingly, we present some desirable properties of 

the PFWMM operator. 

Theorem 6. (Monotonicity) Let  , ,j j j jv   and 

  , , 1,2, ,j j j jv j n       K be two sets of PFNs. 

If j j   for all j, then 

   1 2 1 2, ,..., , ,...,P P

n nPFWMM PFWMM       

(17) 

The proof of Theorem 6 is similar to that of Theo-

rem 3 therefore we will skip it here to avoid repeti-

tion.. 



Theorem 7. (Boundedness) Let  , ,j j j jv   , 

 1,2,...,j n  be a collection of PFNs, if 

max j
j

    and min j
j

   , then 

 1 2, ,...,P

nPFWMM       ,      (18) 

Evidently, the PFWMM operator does not has the 

property of idempotency. 

3.3. The picture fuzzy dual Muirhead mean operator 

In this section, we extend the DMM to aggregate 

picture fuzzy information. 

Definition 8. Let   , , 1,2,...,j j j jv j n    be a 

collection of PFNs, and  1 2= , ,..., n

nP p p p R  be a 

vector of parameters, then the PFDMM is defined as 

 1 2, ,...,P

nPFDMM     

  
1

!

1

1

1

n

n n

j jn
S j

j

j

p

p





 



 
  

 



, (18) 

where   1,2,...,j j n  is any permutation of 

 1,2, ,nK , and
nS  is the collection of all permuta-

tion of  1,2, ,nK . 

Theorem 8. Let   , , 1,2,...,j j j jv j n    be a 

collection of PFNs and  1 2= , ,..., n

nP p p p R  be a 

vector of parameters, then the aggregated value by 

the PFDMM is also a PFN and 

 1 2, ,...,P

nPFDMM      
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

  , (19) 

The proof of Theorem 8 is similar to that of Theo-

rem 1, which is skipped here to save space. 

In the followings, we will discuss some special 

cases of PFDMM regarding of the parameter vector 

P. 

Case 1: if  1,0,...,0P   , then the PFDMM operator 

reduces to the following 

   1,0,...,0 1

1 2

1

, ,..., =
n

n

n j

j

PFDMM    


   

   
1 1

1

1 1 1

,1 1 ,1 1
n n n

n n
n

j j j

j j j

u v
  

 
    

 
   , (20) 

which is the PFG operator. 

Case 2: if  ,0,...,0P   , then the PFDMM opera-

tor reduces to the following 

     
1

,0,...,0

1 2

1

1
, ,..., =

n

n
n j

j

PFDMM


   
 

 
  

 
  

    
1 1

1 1

1 1

1 1 1 1 , 1 1 ,
n nn n
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 
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  

 ,   (21) 

which is the generalized picture fuzzy geometric 

(GPFG) operator. 

Case 3: if  1,1,0,0,...,0P   , then the PFDMM op-

erator reduces to the following 

       

1
1,1,0,0, ,0 1

1 2

, 1

1
, , ,
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 , (22) 

which is the picture fuzzy geometric Bonferroni 

mean (PFGBM) operator. 

Case 4: if  1,1,...,1,0,0,...,0

k n k

P




64 7 48 64 7 48

, then the PFDMM 

operator reduces to the following 
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which is the picture fuzzy dual Maclaurin symmetric 

mean (PFDMSM) operator. 

Case 5: if  1,1,...,1P  , then the PFDMM operator 

reduces to the following 

   1,1,...,1

1 2

1

1
, , , =

n

n j

j

PFDMM
n

   
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  

 
   , (24) 

which is the PFA operator. 

Case 6: if  1 ,1 ,...,1P n n n , then the PFDMM 

operator reduces to the following 

   1 ,1 ,...,1

1 2

1

1
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j

PFDMM
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which is the PFA operator. 

3.4. The picture fuzzy weighted dual Muirhead mean 

operator 

Definition 9. Let   , , 1,2,...,j j j jv j n    be a 

collection of PFNs,  1 2, ,...,
T

nw w w w be the weight 

vector of  1,2,...,j j n  , satisfying  0,1iw  and 

1
1

n

jj
w


 , and let  1 2= , ,..., n

nP p p p R be a vec-

tor of parameters. If 
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,            (26) 

then PPFWDMM is the called the (picture fuzzy 

weighted dual Muirhead mean) PFWDMM operator, 

where   1,2,...,j j n  is any permutation of 

 1,2, ,nK , and
nS  is the collection of all permuta-

tion of  1,2, ,nK . 

Theorem 9. Let   , , 1,2,...,j j j jv j n    be a 

collection of PFNs and  1 2= , ,..., n

nP p p p R  be a 

vector of parameters, then the aggregated value by 

using the PFWDMM operator is still a PFN and 

 1 2, ,...,P
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The proof is similar to that of Theorem 5, which is 

skipped to save space here. 

In the following, we present some properties of the 

PFWDMM operator.  

Theorem 10. (Monotonicity) Let  , ,j j j jv    

and   , , 1,2, ,j j j jv j n       K be two sets of 

PFNs. If j j   for all j, then 

 1 2, ,...,P

nPFWDMM     

 1 2, ,...,P

nPFWDMM      . (28) 

Theorem 11. (Boundedness) Let  , ,j j j jv   , 

 1,2,...,j n  be a collection of PFNs, if 

max j
j

    and min j
j

   , then 

 1 2, ,...,P

nPFWMM       .      (29) 

Evidently, the PFWDMM operator does not has 

the property of idempotency. 



4. An approach to MADM with picture fuzzy 

information 

In this section, we present a novel method to 

MADM in which attribute values take the form of 

PFNs. Consider a typical MADM problem in 

which  1 2, ,..., mX x x x be a series of alternatives 

and  1 2, ,..., nG G G G be a set of attributes, with the 

weight vector being  1 2, ,...,
T

nw w w w , satisfy-

ing
1

1
n

ii
w


 and  0,1iw  . For the attrib-

ute  1,2,...,jG j n of alternative  1,2,...,ix i m , 

decision makers are required to use a 

PFN  , ,ij ij ij ijp v  1,2,..., ; 1,2,...,i m j n  to 

express their preference information. Therefore, a 

picture fuzzy decision matrix can be obtained. In the 

following section, we shall utilize the proposed pic-

ture fuzzy aggregation operators to solve this prob-

lem. 

Step 1. Standardize the original decision matrix. 

Generally, attributes can be divided into two types, 

benefit attribute and cost attribute. Thus, the original 

decision matrix should be standardized as follows 

 

 
1

2

, ,

, ,

ij ij ij j

ij

ij ij ij j

v G I
p

v G I

 

 

 
 



                 (30) 

where
1I and

2I represent the benefit type attribute and 

the cost type attribute respectively. 

Step 2. For alternative  1,2, ,ix i m K , utilize the 

PFWMM operator 

 

 1 2, ,...,P

i i i inPFWMM    ,          (31) 

or the PFWDMM operator 

 1 2, ,...,P

i i i inPFWDMM    ,        (32) 

to aggregate attribute values, so that a series of com-

prehensive preference value can be obtained. 

Step 3. According to Definition 3, calculate the 

scores and accuracy of the overall preference val-

ue  1,2, ,ip i m K . 

Step 4. Rank the alternatives. 

5. Numerical example  

In the following, we provide a numerical example 

to illustrate the application of the developed approach. 

Suppose an organization plans to implement enter-

prise resource planning (ERP) system (adapted from 

[32]). The first step is to form a project team that 

consists of CIO (chief information officer) and two 

senior representatives from user departments. By 

collecting all possible information about ERP ven-

dors and systems, project team chooses five potential 

ERP systems  1,2, ,5ix i  K as candidates. The 

company employs some external professional organi-

zations (or experts) to aid this decision-making. The 

project team selects four attributes to evaluate the 

alternatives: (1) function and technology
1G ; (2) stra-

tegic fitness
2G ; (3) vendor’s ability

3G ; (4) vendor’s 

reputation
4G . The five possible ERP systems 

 1,2, ,5iX i  K  are to be evaluated using the pic-

ture fuzzy numbers by the decision makers under the 

above four attributes with the weighted vec-

tor  0.2,0.1,0.3,0.4
T

w  , and construct the follow-

ing matrix  
5 4

, ,ij ij ij ijv  


  shown in Table 1. 

5.1. Decision making process 

Step 1. As all of the attribute values are the same 

type, the original decision matrix does not need to be 

standardized. 

Step 2. For each alternative, we utilize the 

PFWMM operator to aggregate decision makers’ 

Table 1. The picture fuzzy decision matrix 

 
1G   

2G  
3G  

4G  

1x  (0.53,0.33,0.09) (0.89,0.08,0.03) (0.42,0.35,0.18) (0.08,0.89,0.02) 

2x  (0.73,0.12,0.08) (0.13,0.64,0.21) (0.03,0.82,0.13) (0.73,0.15,0.08) 

3x  (0.91,0.03,0.02) (0.07,0.09,0.05) (0.04,0.85,0.10) (0.68,0.26,0.06) 

4x  (0.85,0.09,0.05) (0.74,0.16,0.10) (0.02,0.89,0.05) (0.08,0.84,0.06) 

5x  (0.90,0.05,0.02) (0.68,0.08,0.21) (0.05,0.87,0.06) (0.13,0.75,0.09) 

 



preference information. Therefore, a series of overall 

assessments can be obtained. Here we as-

sume  1,1,1,1P  , then the overall values of alterna-

tive are  

 1 0.8460,0.1137,0.0258  ,  

 2 0.8086,0.1176,0.0476  , 

 3 0.8488,0.0622,0.0234  , 

 4 0.8358,0.1214,0.0283  , 

 5 0.8477,0.0867,0.0308  . 

Step 3. Based on Definition 3, we can calculate 

the score function   1,2,3,4,5iS i  as follows 

 1 0.8202S   ,  2 0.7610S   ,  3 0.8254S   , 

 4 0.8075S   ,  5 0.8169S   . 

Step 4. According to the ranking order of the 

overall values, we can get the ranking order of the 

corresponding alternatives. 

That is
3 1 5 4 2        . Therefore

3A is the 

best alternative. 

In step 3, if we utilize the PFWDMM operator to 

aggregate decision makers’ assessments, then the 

overall values of alternatives are 

 1 0.1336,0.8255,0.5076  , 

 2 0.0823,0.8209,0.5661  , 

 3 0.0790,0.7808,0.4647  , 

 4 0.0699,0.8718,0.4788  , 

 5 0.0956,0.8448,0.5304  . 

Therefore, the scores of overall values are 

 1 0.3740S    ,  2 0.4838S    , 

 3 0.3857S    ,   4 0.4089S    , 

 5 0.4347S    . 

Then the ranking result is
1 3 4 5 2A A A A Af f f f . 

5.2. The influence of the parameter vector P on the 

ranking results 

 In this section, we investigate the influence of the 

parameter vector P on the final ranking results. We 

assign different values to P and the scores functions 

and ranking ordered are presented in Tables 2 and 3.  

 

 

Table 2. Scores and ranking results by using the different parameter vector P in the PFWMM operator 

Parameter vector P The score function   1,2,3,4,5is i   Ranking results 

P = (1, 0, 0, 0) 
 1 0.4129S      2 0.2503S    

 3 0.4288S      4 0.3796S    5 0.3986S   . 
3 1 5 4 2A A A A Af f f f   

P = (1, 1, 0, 0) 
 1 0.6647S      2 0.5609S    

 3 0.6743S      4 0.6428S    5 0.6579S    
3 1 5 4 2A A A A Af f f f  

P = (1, 1, 1, 0) 
 1 0.7659S      2 0.6904S    

 3 0.7726S      4 0.7498S    5 0.7614S    
3 1 5 4 2A A A A Af f f f  

P = (1, 1, 1, 1) 
 1 0.8202S      2 0.7610S    

 3 0.8254S      4 0.8075S    5 0.8169S    
3 1 5 4 2A A A A Af f f f  

P = (0.25, 0.25, 0.25, 0.25) 
 1 0.9738S      2 0.7208S    

 3 0.9765S      4 0.9717S    5 0.9687S    
3 1 4 5 2A A A A Af f f f  

P = (2, 0, 0, 0) 
 1 0.4659S    2 0.3155S    

 3 0.5063S    4 0.4534S    5 0.4708S    
3 5 1 4 2A A A A Af f f f  

P = (3, 0, 0, 0) 
 1 0.5060S      2 0.3541S    

 3 0.5510S      4 0.4940S    5 0.5157S    
3 5 1 4 2A A A A Af f f f  

 

 

 

 

 

 

 
Table 3. Score functions and ranking results by using the different parameter vector P in the PFWDMM operator 



Parameter vector P The score function   1,2,3,4,5is i   Ranking results 

P = (1, 0, 0, 0) 
 1 0.3701S    2 0.1881S    

 3 0.2338S      4 0.1990S    5 0.2520S   . 
1 5 3 4 2A A A A Af f f f  

P = (1, 1, 0, 0) 
 1 0.0083S      2 0.1626S     

 3 0.0642S      4 0.0944S     5 0.0992S     
1 3 4 5 2A A A A Af f f f  

P = (1, 1, 1, 0) 
 1 0.2309S      2 0.3601S     

 3 0.2560S p     4 0.2825S     5 0.3039S     
1 3 4 5 2A A A A Af f f f  

P = (1, 1, 1, 1) 
 1 0.3740S     2 0.4838S     

 3 0.3857S     4 0.4089S     5 0.4347S     
1 3 4 5 2A A A A Af f f f  

P = (0.25, 0.25, 0.25, 0.25) 
 1 0.3320S     2 0.4647S     

 3 0.3596S     4 0.3912S      5 0.3948S     
1 3 4 5 2A A A A Af f f f  

P = (2, 0, 0, 0) 
 1 0.3062S    2 0.1406S    

 3 0.1849S    4 0.1548S    5 0.1872S    
1 5 3 4 2A A A A Af f f f  

P = (3, 0, 0, 0) 
 1 0.2576S    2 0.1042S    

 3 0.1534S    4 0.1257S    5 0.1423S    
1 3 5 4 2A A A A Af f f f  

 

 

As seen in Tables 2 and 3, different scores of the 

overall assessments and the ranking results can be 

obtained with regarding of the parameter vector P. 

However, although the ranking results are different, 

the best alternatives are always the same. For the 

PFWMM operator, the best alternatives is always A3 

and for the PFWDMM operator, the best alternatives 

is always A1. In addition, for the PFWMM operator, 

the more interrelationship among PFNs are taken into 

consideration, the greater the scores of the overall 

values will become. However, the PFWDMM opera-

tor is opposite, which means that the more interrela-

tionship among PFNs are captured, the smaller the 

cores of the overall values will become. Therefore, 

different parameter vector P can be regarded as the 

decision makers' risk preference. 

5.3. Comparative analysis 

To illustrate the superiorities of the proposed 

method, we conduct comparative analysis. We com-

pare the proposed method with Wei’s [32] method 

based on picture fuzzy weighted averaging (PFWA) 

or picture fuzzy weighted geometric (PFWG) opera-

tors. We utilize Wei’s [32] method and the proposed 

method in this paper to solve the above problem. The 

ranking results are shown in Table 4.  
Table 4. Ranking results by using different methods 

Method Ranking results 

Wei’s [32] method based on 

PFWA operator 3 2 1 5 4A A A A Af f f f  

Wei’s [32] method based on 

the PFWG [32] operator 3 1 2 5 4A A A A Af f f f  

The proposed method based 

on the PFWMM operator  

(P = (1,1,1,1)) 
3 1 5 4 2A A A A Af f f f  

The proposed method based 

on the PFWDMM operator  

(P = (1,1,1,1)) 
1 3 4 5 2A A A A Af f f f  

From Table 4, we can find that the ranking results 

derived by Wei’s method are different from the rank-

ing orders obtained by the proposed method in this 

paper. The reason why the ranking results by using 

the PFWA operator and the PFWMM operator are 

different is that the former operator cannot consider 

the interrelationship between PFNs and the latter 

operator can capture the interrelationship among all 

PFNs. The reason why the ranking results by utiliz-

ing the PFWG and the PFWDMM operators are dif-

ferent is similar. Additionally, the proposed method 

in the paper is more general and flexible. 

When  1,0,...,0P  in the PFWMM operator, then 

proposed method is reduced to the Wei’s [32] meth-

od based on PFWA operator. When  1,0,...,0P  in 

the PFWDMM operator, then proposed method is 

reduced to the Wei’s [32] method based on PFWG 

operator. In other words, Wei’s [32] method is spe-

cial case of our method. Therefore, the proposed 

method is more powerful and general than Wei’s [32] 

method.  



6. Conclusion 

 The recently proposed PFS has higher capacity 

than IFS for handling fuzziness and uncertainty in the 

process of MADM. The main contributions of this 

paper are that a series of picture fuzzy aggregation 

operators as well as  a novel method to picture fuzzy 

MADM problems were proposed. More specifically, 

we extended traditional MM and DMM to picture 

fuzzy environment and proposed PFMM, PFWMM, 

PFDMM, and PFWDMM operators. These operators 

can reflect the correlations among all the picture 

fuzzy elements. Moreover, these operators make the 

information aggregation flexible as they have a vec-

tor of parameters.  Some existing aggregation opera-

tors are special cases of the proposed operators. Fur-

thermore, we propose a novel approach to MADM 

with picture fuzzy information. Finally, we applied 

the proposed method in a real decision making prob-

lem to illustrate the effectiveness of the proposed 

method. To better demonstrate the advantages of the 

proposed method, we compare it with other methods. 

In future works, we will investigate more aggregation 

operators for aggregating PFNs. For example, due to 

time shortage or a lack of expertise, decision makers 

may provide unduly high or low assessment values 

which negatively affect the decision results. Thus, 

reducing or eliminating such negative  influence 

should be considered when fusing decision makers’ 

ideas. In addition, considering MM is an effective 

and powerful aggregation technology, we will unitize 

it to fuse more fuzz information, such as hesitant 

picture fuzzy information, interval-valued picture 

fuzzy information, q-rung orthopair fuzzy infor-

mation [49], q-rung interval-valued orthopair fuzzy 

information, q-rung orthopair linguistic information 

and so forth.  
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