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Abstract

We develop and study sequential testing procedures á la Chu et al. (1996) for on-line detection

of changes in a time series from stationarity to mild forms of non-stationarity. The proposed

tests are based on sequential CUSUM and KPSS-type detector processes, and are shown to pro-

vide consistent detection under a wide range of change point models, including changes in the

parameters of ARMA and GARCH series from values within the model’s stationarity parameter

region to values close (converging) to the stationarity boundary. Local asymptotic results are

established giving precise descriptions of the time to detection under several of these models,

which show that such procedures are powerful to detect a wide range of non-stationary charac-

teristics, including changes in mean, volatility, and unit root behaviour. The proposed methods

are investigated by means of a simulation study and in applications to monitoring for changes

in trend and unit root behaviour in macroeconomic production series, and to detect changes in

volatility of the S&P-500 stock market index.
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1. Introduction

The literature on modelling and performing both retrospective and sequential detection for

change points in econometric and financial time series is extensive. Typically, change points are

modelled in terms of parameters (mean, variance, etc.) assumed to describe the underlying data

generating process that differ before and after the time of change, and often then the series before

and after the change can be thought of as arising from two, perhaps trend, stationary processes

with unique distributions. Retrospective as well as sequential methods in change point analysis

have been surveyed recently in Aue and Horváth (2013) and Horváth and Rice (2014).

A somewhat less explored class of models in change point analysis that are of potential interest

when studying some economic and financial time series are those in which the series is assumed to

evolve according to a stationary model with the exception of some short stretches, or “bubbles”,

that exhibit non-stationary or near non-stationary behaviour. For instance, production time

series are often modelled as having stationary residuals around a piecewise linear trend with some

potential stretches of unit root or random walk behaviour; see e.g. Nelson and Plosser (1982),

Murray and Nelson (2000), Zivot and Andrews (2002). Similar models are also considered in the

context of formal bubble detection with asset price data, which are typically modelled as change

points from a random walk, or stationary first differenced series, to an explosive autoregressive

one process with root that is close to (converging to) unity; see Phillips and Yu (2011), Phillips

et al. (2015a,b), and Hafner (2018). Other unit root and stationarity tests that differentiate

between I(0) and I(1) series can also be used for the purpose of retrospective bubble detection;

see Kim (2000), Busetti and Taylor (2004), and Michaelides et al. (2014). We refer the reader to

Gürkaynak (2005), Homm and Breitung (2012), and Linton (2019) for reviews and comparative

studies of several of these methods.

In both of the above application arenas, online monitoring of the time series for such non-

stationary characteristics is of special interest. Knowledge of such non-stationary behaviour may

be used to improve economic forecasts or to inform policy decisions in real time. Based on the

framework laid out in the seminal work of Chu et al. (1996) and in the context of financial bubble

detection, Homm and Breitung (2012) describe adapting several bubble detection statistics for

use in sequential monitoring for bubbles.

The theory surrounding such tests to date is lacking though in a number of areas. For

example, for such sequential procedures it has not been quantified how “strong” or “long” a

non-stationary bubble must be in order for such sequential procedures to be consistent. Given
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that many financial bubble models employ parametric models with parameters approaching the

stationarity boundary, see for example Phillips and Yu (2011) and Phillips and Magdalinos

(2007), such an analysis should evidently consider and quantify the effect of time series models

that are close to their stationarity boundary. Additionally, the types of non-stationarities such

methods are consistent against has been only lightly studied. Special attention has been paid

in the literature to changes from stationartiy to I(1) processes, but little appears to be known

regarding how such procedures behave when faced with non-stationarities characterized by, for

example, changes in volatility.

In this paper, we develop and study a simple sequential monitoring procedure for detection

of non-stationarities in time series. The proposed procedure is based on sequentially comparing

a detector process to an upper boundary function, where the detectors are constructed from

sequential CUSUM and KPSS (Kwiatkowski et al. (1992)) type statistics. It is shown under the

null assumption that the observed series is stationary and weakly dependent that the boundary

function can be calibrated in order to asymptotically control the false alarm rate. Further, we

show that if non-stationarities modelled as mildly explosive ARMA and GARCH processes begin

to form in the series, then the detection procedures are asymptotically consistent, and further

local asymptotic results are obtained in these cases giving a precise description on the asymptotic

detection time depending on the magnitude and size of the bubble. Simulation studies and data

applications to monitor for changes in the trend and random walk behaviour of GDP series as

well as to changes in the volatility in the price-to-dividend ratio of the S&P 500 stock market

index show that the proposed procedures work well in practice, and are capable of detecting such

features even before the economic events that these changes are attributed to occur.

The rest of the paper is organized as follows: In Section 2 we formulate the detection problem

in the framework of sequential change point hypothesis testing, and describe several models

considered in the sequel. Section 3 contains the definition of the detectors and boundary functions

that we consider, along with their asymptotic properties assuming the series does not contain

bubbles. We provide asymptotic results on the detectors under several nonstationary models

in Section 4. Section 5 contains the results of a simulation study of the proposed detection

procedures. Sections 6 and 7 provide presentations of the data applications.

2. Problem formulation and modeling of non-stationary bubbles

Consider a financial or economic time series from which we have observed a “stable” historical

sample of length M , X1, . . . , XM . For instance, Xi might represent the first differenced price-
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to-dividend ratio of an asset on day i, with the historical sample taken over a time period that

is thought to be stationary. As additional values of the series XM+1, XM+2, . . . are obtained,

we are interested in detecting as soon as possible the existence of a point k∗ after which a non-

stationary “bubble” begins to build up in the series after observation XM+k∗ . We will describe

more precisely below what we take non-stationarity to mean in this context. We consider here

closed-ended procedures in which we stop the detection procedure after observing T observations

if no non-stationarities have been detected. In order to make this precise, stability of the historical

sample is characterized as follows:

Assumption 2.1. There exists a sequence of standard Wiener processes {WM,1(t), 0 ≤ t ≤M}

and constants µ and σ > 0 such that

sup
0≤t≤M

|SM,1(t)− µt− σWM,1(t)| = oP (M1/2),

where SM,1(t) =
∑

0≤s≤btcXs.

We then consider a sequential hypothesis testing problem with the null hypothesis given by

H0: There exists a sequence of standard Wiener processes {WM,2(t), 0 ≤ t <∞}, indepen-

dent of {WM,1(t), 0 ≤ t ≤M}, such that

sup
1≤t≤T

|SM,2(t)− µt− σWM,2(t)| = oP (T 1/2), for all T > 0,

where SM,2(t) =
∑
M+1≤s≤btcXs and σ > 0 is defined in Assumption 2.1.

H0 and Assumption 2.1 roughly specify that the combined historical sample and incoming

data stream are weakly dependent and generated by the same underlying stochastic process, at

least in an asymptotic sense. The functional central limit theorem assumed inH0 and Assumption

2.1 is satisfied for a wide range of stationary processes, and Billingsley (1968) remains a basic

reference for such results. Hall and Heyde (1980) not only establishes the functional central

limit theorem for martingales and mixingales using the Skorokhod embedding scheme, but also

provides results on the rate of convergence. The monographs of Bradley (2007) and Dedecker et

al. (2007) provide introductions to mixing processes and comprehensive surveys. The proofs of

the functional central limit theorem and moment inequalities for random variables approximable

with sequences of finite dependence is established, for example, in Aue et al. (2014).

We wish to test H0 against the alternative that we vaguely describe as

HA: There exists an integer k∗ with 1 ≤ k∗ ≤ T such that XM+k∗ , ..., XM+k∗+B form a

“bubble”, where B is the length of the bubble.
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Under HA, the observations XM+k∗ , ..., XM+k∗+B are stochastically different from the his-

torical sample. We consider several specific models for HA below, including change point models

with explosive AR(1), mildly nonstationary ARMA and GARCH sequences.

Example 2.1. (Change point in the mean) The most often used model for non-stationarity is

the change in the mean model. It is usually assumed that EXs = µ, 1 ≤ s ≤M + k∗, where µ is

an unknown constant and

EXs = χM (s− (M + k∗)), M + k∗ + 1 ≤ s ≤M + k∗ +B

with some non-constant function χM . After the end of the non-stationary segment, the process

might return to a stationary state. In this paper, we are not interested in detecting the end of

the non-stationary segment of length B.

The next examples are inspired by those of Phillips et al. (2015a,b), and Lee and Phillips

(2016). Throughout these examples, we assume that {εs, s ∈ Z} is an independent and identically

distributed innovation sequence with Eεs = 0.

Example 2.2. (Potential change point in the mean with explosive AR(1) errors) Assume that

Xs =


µ+ ηs, if 1 ≤ s ≤ k∗ +M,

χM (s− (M + k∗)) + ηs, if M + k∗ + 1 ≤ s ≤M + k∗ +B,

(2.1)

where

ηs = ρηs−1 + ε̄s, −∞ < s ≤M + k∗ with some |ρ| < 1,

and

ηs+k∗+M = bs, 1 ≤ s ≤ B,

with

bs = ρMbs−1 + ε̄s+k∗+M = ρMbs−1 + εs, 1 ≤ s ≤ B, (2.2)

εs = ε̄s+k∗+M and b0 = ηM+k∗ . We note that (2.1) allows for changes in the mean as well as in

the structure of the errors. Phillips et al. (2015a,b) consider the case

ρM = 1− a

M
, a 6= 0,

as the model for the bubble. In our sequential setting, the error term is a stationary AR(1)

process until time M + k∗ and then it changes to another AR(1) process with parameter close

to the boundary.
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Following Aue and Horváth (2006) and Phillips and Magdalinos (2007), one can also consider

the mildly explosive case:

Example 2.3. (Potential change point in the mean with mildly explosive AR(1) errors) We

use the model in Example 2.2, but take the regression parameter in (2.2) to be given by

ρM = 1− aM
M

, where aM →∞ and aM/M → 0. (2.3)

We note that Phillips (2015a,b) (cf. also Chapter 9 of Linton (2019)) considers the case when

(2.3) holds and aM → −∞, i.e. ρM converges to 1 from above. The models in Examples 2.2 and

2.3 can be easily generalized to ARMA(p, q) sequences.

Example 2.4. (Potential change point in the mean with explosive ARMA(p, q) errors) It is

assumed that model (2.1) holds. But instead of assuming that ηt, t ≤ M + k∗ is a strictly

stationary AR(1) sequence, we only require that ηt, t ≤M +k∗ is a strictly stationary sequence

with zero mean satisfying Assumption 2.1. In (2.2), the AR(1) sequence is replaced with the

ARMA(p, q) equation with ηs+M+k∗ = bs, 1 ≤ s ≤ B, namely

bs =

p∑
`=1

β`bs−` + εs +

q∑
`=1

α`εs−`, 1 ≤ s ≤ B, (2.4)

where bs = ηs+M+k∗ ,−p ≤ s ≤ 0. Now the proximity to the boundary case is measured by how

close

ρM = β1 + · · ·+ βp (2.5)

is to one.

Since the pioneering work of Engle (1982), non–linear time series are frequently used to model

stock prices and returns. The GARCH(1,1) models of Bollerslev (1986) (cf. also Engle and

Bollerslev (1986)) and its extensions are widely used in applications, including in economics and

finance. For a review on GARCH we refer to Francq and Zakoian (2010) and its applications in

finance to Hull (2000). Berkes et al. (2005) investigated “nearly–integrated” GARCH sequences

which we use as a possible model for mild non-stationarity in financial data.

Example 2.5. (Potential change point in the mean with mildly explosive GARCH errors) We

replace the AR(1) and ARMA(p, q) equations of (2.2) and (2.4) with

bt = σtεt and σ2
t = ω + αb2t−1 + βσ2

t−1, 1 ≤ t ≤ B, (2.6)
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where σ2
0 = η2

M+k∗ , bt = ηt+k∗ , t = 0, 1, . . . , B and Eε2t = 1. It is assumed tht α = αM , β = βM

and the closeness to the boundary is measured by φM = 1− (α+ β). The mildly explosive case

means that φM → 0, as M →∞. For some theoretical results on mildly explosive GARCH (1,1)

processes, we refer to Berkes et al. (2005).

3. Sequential testing procedure and main asymptotic results

Our detection procedure for HA is built on the basic sequential change point testing frame-

work of Chu et al. (1996). We define a detector VM (k), computed from the observations

X1, X2, . . . , XM+k, which is compared to a boundary function gM (k). Introduce the stopping

time

τM = inf{k : VM (k) ≥ gM (k), 1 ≤ k ≤ T }.

We use the convention that inf ∅ =∞, which implies that we set the stopping time to infinity if

the detector does not cross the boundary during the observation period of length T . If τM <∞,

then the procedure is terminated and we say that we have detected a non-stationary bubble at

time M + τM . We aim then to choose the boundary such that

lim
M→∞

P{τM <∞} = q under H0, (3.1)

and

lim
M→∞

P{τM <∞} = 1 under HA, (3.2)

where q is a given tolerance level for falsely detecting a non-existent change, and is selected by

the practitioner.

We consider two types of detectors. The first detector is based on sequential CUSUM statis-

tics. Although CUSUM based procedures were developed to detect change points in the mean

of time series, we establish below that they also have nontrivial power to detect mildly non-

stationary ARMA and GARCH segments. Let

Z
(1)
M (k) = k

∣∣∣∣ 1

M
SM,1(M)− 1

k
SM,2(k)

∣∣∣∣ , (3.3)

i.e. we compare the sample mean of the historical sample sequentially with the sample means of

the incoming data stream. The second detector is based on the KPSS statistic of Kwiatkowski

et al. (1992) using the modification of Giraitis et al. (2003). Let

Z
(2)
M (k) =

∣∣∣∣∣SM,2(k)− k

M
SM,1(M)− 1

k

(
k∑
`=1

(
SM,2(`)− `

M
SM,1(M)

))∣∣∣∣∣ . (3.4)

For each detector we use a boundary function of the following form
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Assumption 3.1.

gM (k) = c(1 + d0M
−τ )M1/2

(
1 +

k

M

)
f

(
k

k +M

)
,

where f(·) is a continuous function on [0, 1], minz≤u≤1 f(u) > 0 for all z > 0, lim supu→0 u
γ/f(u) <

∞ with some γ < 1/2, d0 ≥ 0 and τ ≥ 0.

The processes Z
(1)
M (k) and Z

(2)
M (k) are not asymptotically pivotal, since their asymptotic

distributions depend on σ of Assumption 2.1. We assume that we can estimate σ from the

historical sample with an estimator σ̂M satisfying

Assumption 3.2. σ̂M → σ in probability.

Now the detectors are defined using the normalized Z
(i)
M processes

V
(1)
M (k) =

Z
(1)
M (k)

σ̂M
and V

(2)
M (k) =

Z
(2)
M (k)

σ̂M
.

In order to derive the asymptotic properties of the proposed detection procedure, we assume

that the length of the training sample and termination time of the closed-ended procedure are

asymptotically proportional.

Assumption 3.3. The time to termination of the sequential procedure T = T (M), and

lim
M→∞

T

T +M
= θ.

In addition to these assumptions, we also require estimates for the moments of the partial

sums of X1, X2, . . .

Assumption 3.4. There is a ν > 2 and constant C such that for all M + 1 ≤ ` ≤ k ≤M + T

E

∣∣∣∣∣
k∑
i=`

(Xi − EXi)

∣∣∣∣∣
ν

≤ C(k − `+ 1)ν/2.

We note that Assumption 3.4 is satisfied by a large class of weakly dependent sequences.

Below let W (t), 0 ≤ t <∞ be a Wiener process (standard Brownian motion).

Theorem 3.1. If Assumptions 2.1–3.4 hold, then

lim
M→∞

P{τM <∞} = P

{
sup

0≤u≤θ
|W (u)|/f(u) ≤ c

}
, (3.5)

if the detector is given by V
(1)
M (k) and

lim
M→∞

P{τM <∞} = P

{
sup

0≤u≤θ

1

f(u)

∣∣∣∣W (u)− (1− u)2

u

∫ u

0

1

(1− x)3
W (x)dx

∣∣∣∣ ≤ c} , (3.6)

if the detector is given by V
(2)
M (k).
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Remark 3.1. Let f(u) = uγ with some 0 ≤ γ < 1/2. The scale transformation of the Wiener

process gives

sup
0≤u≤θ

|W (u)|/uγ = sup
0≤t≤1

|W (tθ)|/(tθ)γ D
= θ1/2−γ sup

0≤t≤1
|W (u)|/uγ .

The distribution of sup0≤t≤1 |W (t)| is well known and its table can be found, for example, in

Shorack and Wellner (1986). Horváth et al. (2004) provide selected critical values for sup0≤t≤1 |W (t)|/tγ

for γ = 0, .15, .25, . . . , .45 and .49.

Remark 3.2. The proof of (3.6) shows (see (8.11)) that

sup
0≤u≤θ

1

f(u)

∣∣∣∣W (u)− (1− u)2

u

∫ u

0

1

(1− x)3
W (x)dx

∣∣∣∣
D
= sup

0≤t≤θ/(1−θ)

1

(1 + t)f(t/(1 + t))

∣∣∣∣W1(t)− tW2(1)− 1

t

∫ t

0

(W1(u)− uW2(1))du

∣∣∣∣ ,
where W1(t), 0 ≤ t < ∞ is a Wiener process, W2(1) is a standard normal random variable,

{W1(t), 0 ≤ t <∞} and W2(1) are independent.

Remark 3.3. We note that the limits in Theorems 3.1 do not depend on the choices of d0

nor on τ defining the boundary function because d0M
−τ disappears in the limit and it is used

to improve the finite sample properties. We use them as tuning parameters to improve finite

sample performance. Simulations show that the detector crosses the boundary too often after

the first few observations under the null hypothesis. Including d0M
−τ in the boundary function,

we increase the value of the boundary close to 0. Simulations shows that d0 = ρ̂w/(1− ρ̂w) and

τ = 1/2 provide good results, where ρ̂w is an estimated autoregressive coefficient by fitting an

AR(1) model to the historical data using the least squares principle. For the choice f(u) = uγ ,

the number of observations needed to detect the change is a decreasing function of γ so larger γ

will give faster detection. The choice of γ = 1/2 which is related to the square root boundary in

classical sequential analysis is not allowed. Clearly, according to the law of the iterated logarithm

sup0<u≤θ |W (u)|/u1/2 = ∞ with probability one. Hence the limits in (3.5) and (3.6) are 0 for

γ = 1/2. The rates of convergence in (3.5) and (3.6) are slower for γ close to 1/2.

4. Asymptotics for the time to detection under the alternative

Given the well established literature on sequential detection of change points in the mean, we

consider only the change in the structure of the errors towards non-stationarity in this section,

i.e. we assume that χM (u) = µ in Examples 2.2–2.5.
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4.1. Mildly explosive AR(1) observations

We assume that (2.2) holds and

Assumption 4.1. {εt, 0 ≤ t <∞} are independent and identically distributed random variables,

independent of {Xs, s < k∗}, with Eε0 = 0, 0 < Eε20 = σ2
ε < ∞ and E|ε0|κ < ∞ with some

κ > 2.

Theorem 4.1. Assume that the detector is defined by V
(1)
M (k) or V

(2)
M (k),

k∗ = O(1), (4.1)

0 < δf = lim
u→0

f(u)/uγ <∞ with some γ < 1/2, (4.2)

(2.2), (2.3), and Assumptions 2.1 and 4.1 hold.

(i) If P (|b0| 6= 0) = 1,

B →∞, (4.3)

and
aM

M1/2+γ
→ 0 as M →∞, (4.4)

then we have

P (τM ≤ k∗ + 2)→ 1 as M →∞. (4.5)

(ii) If

BM (2γ−1)/(3−2γ) →∞, as M →∞, (4.6)

and
aM

M1/2+γ
= O(1), (4.7)

then we have

τM = OP (M (1−2γ)/(3−2γ)). (4.8)

(iii) Let

AM =
( aM
M1/2+γ

)1/(1/2−γ)

. (4.9)

If

P {b0 = 0} = 1 (4.10)

lim inf
M→∞

B/AM =∞, (4.11)
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aM
M1/2+γ

→∞, (4.12)

and τM is defined by the detector V
(1)
M (k), then we have that

lim
M→∞

P{τM > xAM} = P

{
sup

0≤u≤1
|W (u)|/uγ < cxγ−1/2 δfσ

σε

}
. (4.13)

If τM is defined by the detector V
(2)
M (k), then we have that

lim
M→∞

P{τM > xAM} = P

{
sup

0≤u≤1
u−γ

∣∣∣∣W (u)− 1

u

∫ u

0

W (t)dt

∣∣∣∣ < cxγ−1/2 δfσ

σε

}
. (4.14)

Conditions (4.3), (4.6), and (4.11) describe how large the bubble must be in order for it to

be consistently detected relative to strength of the alternative. The result shows that if aM is

small, i.e. the observations are generated from a process that is closer to a unit root process, we

need fewer observations to find the change and the size of the bubble could be smaller. The rate

of τM in (4.5) suggests that one obtains faster detection asymptotically by taking γ to be close

to 1/2. This observation is further studied and confirmed via simulation in Section 5 below.

Since the AR(1) process has been extensively studied in the literature on financial bubble

detection when

ρM = 1 +
aM
M

, aM > 0, (4.15)

we consider the behaviour of our testing procedure when ρM converges to 1 from above.

Theorem 4.2. Assume that the detector is defined by V
(1)
M (k) and V

(2)
M (k), Assumptions 2.1

and 4.1, (2.2), (4.1), and (4.2) hold, but (2.3) is replaced by (4.15).

(i) If P (|b0| 6= 0) = 1, (4.3) and (4.4) hold, then we have (4.5).

(ii) If (4.6) and (4.7) hold, then we have (4.8).

(iii) Assume that (4.10), (4.11) and (4.12) hold,

(iii-a) If

lim sup
M→∞

a
3
2−γ
M

M
<∞,

then (4.13) and (4.14) hold.

(iii-b) If

lim sup
M→∞

a
3
2−γ
M

M
=∞, (4.16)

then

τM = OP ((M/aM ) logM)
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To understand the difference between Theorems 4.1 and 4.2, we note that in case of b0 = 0,

var(bs) is proportional M/aM in case of (2.3), to s if ρ = 1 and to (exp(saM/M)− 1)M/aM if

(4.15) holds. This means that the partial sums of the bs depend on the number of terms in the

sum. In case of (4.16) aM is large, so bs will be a large random variable even for small s.

We also note that except degenerate cases, P (b0 = 0) = 0 if we start with an stationary

AR(1) process during the training sample.

4.2. Mildly explosive ARMA(p, q) observations

We assume that the conditions of Example 2.4 hold. The coefficients α1, . . . , αm, β1, . . . , βp

are allowed to depend on M , but such that

0 < lim inf
M→∞

|βp| ≤ lim sup
M→∞

|βp| <∞. (4.17)

The roots of the characteristic polynomial ϕ(x) = 1 − β1x − β2x
2 − . . . − βpxp are denoted by

r1,M , r2,M , . . . , rp,M such that |r1,M | ≤ · · · ≤ |rp,M |, where in this case | · | denotes the complex

modulus. First we consider the case when the roots of ϕ(x) are distinct and exactly one of them

approaches the boundary of the unit circle. Let

r1,M be real, and r1,M = 1 + aM/M, aM →∞ and aM/M → 0, (4.18)

lim
M→∞

ri,M = ri, |ri| > 1. (4.19)

Under (4.18) and (4.19), it follows that asymptotically ρM = β1 + · · · + βm ≈ 1 − a∗M/M with

aM/a
∗
M converging to a positive constant and a∗M/M → 0 as M →∞, in analogy with the mildly

explosive AR(1) case. In order to have a non–degenerate limit for the normalized partial sums

of mildly explosive ARMA(p, q) variables, we must assume in addition that

lim
M→∞

|1 + · · ·+ αq| = Ξ > 0. (4.20)

In the statement below we let ηp = (bp, bp−1, . . . , b0)>.

Theorem 4.3. Assume that the detector is defined by V
(1)
M (k) or V

(2)
M (k), (2.4), (4.1), (4.2),

(4.17)–(4.20), and Assumptions 2.1 and 4.1 hold.

(i) If (4.3) and (4.4) are satisfied, and P (‖ηp‖ = 0) = 0, then (4.5) holds.

(ii) If (4.6) and (4.7) are satisfied, then (4.8) holds.

12



(iii) If (4.11), (4.12) hold and τM is defined by the detector V
(1)
M (k), then we have that

lim
M→∞

P{τM > xAM} = P

{
sup

0≤u≤1
|W (u)|/uγ < cxγ−1/2 δfσ

Ξ1/2σε

}
,

where AM is defined in (4.9). If τM is defined using V
(2)
M (k), then we have that

lim
M→∞

P{τM > xAM} = P

{
sup

0≤u≤1
u−γ

∣∣∣∣W (u)− 1

u

∫ u

0

W (t)dt

∣∣∣∣ < cxγ−1/2 δfσ

Ξ1/2σε

}
.

4.3. Mildly explosive AR(2,1) processes with double root

In Section 4.2 the roots of the characteristic equation of the ARMA(p,q) sequence are assumed

distinct. We also consider the case when the characteristic polynomial has a double root that is

approaching the unit circle. For the sake of simplicity, we assume the bubble is generated from

an ARMA(2,1) process to illustrate this case. We replace (2.4) with

bs = 2βbs−1 − β2bs−2 + εs, 1 ≤ s ≤ B. (4.21)

If |β| < 1, then bs converges a.s. to the stationary solution when s→∞. To study the boundary

case we assume that

β = 1− aM
M

, with aM →∞ and aM/M → 0. (4.22)

In this case we are able to obtain the following upper bound on τM .

Theorem 4.4. If the detector is defined by V
(1)
M (k) or V

(2)
M (k), Assumptions 2.1, 4.1, (4.1)–(4.3),

(4.20) and (4.21) are satisfied, then there exists a positive sequence JM so that

τM = OP (JM ),

for all JM satisfying

B/JM →∞, (4.23)

JM
aM
M
→ 0 (4.24)

and

JMM
(2γ−1)/(5−2γ) →∞. (4.25)

13



One may obtain similar results for general ARMA(p, q) sequences for which the characteristic

polynomial has roots with multiplicity at least two approaching the boundary of the unit circle.

When γ = 0 in the definition of f(u), the exact rate of τM can be obtained.

Remark 4.1. We assume that Assumptions 2.1, 4.1, (4.1)–(4.3), (4.20) and (4.21) are satisfied,

B/M1/5 →∞, and aMM
−4/5 → 0. (4.26)

Then for all x > 0,

lim
M→∞

P (τM > xM1/5) = P

(
sup

0≤u≤1

∣∣∣∣∫ u

0

∫ z

0

W (y)dydz

∣∣∣∣ < cx−5/2 δfσ

σε

)
.

4.4. Mildly explosive GARCH (1,1) observations.

In this section we assume that the equations in (2.6) hold and

εt, t ∈ Z are independent and identically distributed random variables, (4.27)

independent of σ2
0 , Eε

2
i = 1, and Eε4i <∞,

Eσ2
0 <∞ and Eσ4

0 <∞ (4.28)

and

ω > 0, α ≥ 0, β ≥ 0 and α+ β < 1. (4.29)

Assumptions (4.27)–(4.29) are standard in the GARCH literature (see Francq and Zakoian

(2010)). We assume that

α = αM , β = βM , α+ β = 1− φM , φM =
aM
M

, (4.30)

aM →∞ and aM/M → 0, as M →∞

and

M1/2αM/a
1/2
M → 0. (4.31)

Assumption (4.31) is taken from Berkes et al. (2005). We note that in case of α + β = 1 a

stationary GARCH(1,1) might exists but will not have a finite second moment. As the GARCH

becomes integrated, the variance of the CUSUM starts to increase, and hence the process will

cross the boundary simply due to the fluctuations increasing in magnitude.
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Theorem 4.5. We assume that the detector is defined by V
(1)
M (k) or V

(2)
M (k), Assumption 2.1,

(2.6) , (4.1), (4.27)–(4.31) hold.

(i) If aM = O(M1/(2(1−γ))) and

BaM/M →∞,

then we have

τM = O

(
M

aM

)
.

(ii) If M1/(2(1−γ))aM →∞ and

B

(
M2γ

aM

)1/(1−2γ)

→∞,

then we have that

τM = O

(( aM
M2γ

)1/(1−2γ)
)
.

5. Simulation Study

In this section, we present the results of a simulation study that aimed to assess the finite

sample properties of the proposed sequential testing procedure under both H0 and HA. We

generated data under a number of models, which we further detail below, and for several values

of M . In each case we took f(u) = uγ , 0 ≤ γ < 1/2 to define the boundary function, and the

length of the termination period T = M , so that θ = 1/2 in Assumption 3.3. The sequential

procedure was conducted 5000 times with independently generated samples, and the percentage

of simulations for which the detector crossed the boundary function are reported for several

values of γ. For the sake of brevity, we present here the results when using the detector V
(1)
M .

With θ = 1/2, the asymptotic critical values c = c(1)(γ, q) in case of the detector V
(1)
M (k),

and c = c(2)(γ, q) in case of the detector V
(2)
M (k) are defined by

P

{
sup

0≤u≤1/2

|W (u)|/uγ > c(1)(γ, q)

}
= q (5.1)

and

P

{
sup

0≤u≤1/2

1

uγ

∣∣∣∣W (u)− (1− u)2

u

∫ u

0

1

(1− x)3
W (x)dx

∣∣∣∣ > c(2)(γ, q)

}
= q, (5.2)

respectively. These are obtained via Monte Carlo simulation. The resulting critical values for

several values of γ are displayed in Table 5.1.
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Table 5.1: The critical values c(1)(γ, q) of (5.1) and c(2)(γ, q) of (5.2).

c(1)(γ, q) c(2)(γ, q)

γ/q 0.01 0.05 0.10 0.01 0.05 0.10

0 1.96 1.57 1.38 1.17 0.97 0.86

0.15 2.21 1.80 1.59 1.34 1.12 1.00

0.25 2.41 1.99 1.78 1.48 1.24 1.13

0.35 2.68 2.25 2.03 1.67 1.41 1.29

0.45 3.14 2.68 2.46 1.94 1.69 1.57

0.49 3.56 3.05 2.81 2.17 1.90 1.76

In order to estimate σ2 as defined in Assumptions 2.1 and Assumption 3.2, we employ a

kernel lag-window estimator of the form

σ̂2
M =

1

M

M∑
`=1

(X` − X̂M )2 + 2

M−1∑
`=1

K

(
`

h

)
γ̂M (`), where X̄M =

1

M
SM1(M) =

1

M

M∑
`=1

X`,

γ̂M (`) is the sample autocovariance at lag ` of the series based on the historical sample, K is

a kernel function and h is a bandwidth parameter satisfying h = h(M), h/M + 1/h → 0 as

M → ∞. Under mild additional regularity conditions, this estimator satisfies Assumption 3.2;

see Taniguchi and Kakizawa (2000) and Liu and Wu (2010). We compare below the Bartlett

kernel

KB(t) = (1− |t|)I{|t| ≤ 1}

and the quadratic spectral kernel

KQ(t) =
25

12π2x2

(
sin(6πx/5)

6πx/5
− cos(6πx/5)

)
I{|t| ≤ 1}.

Following Andrews (1991), we fit an AR(1) model to the historical data X1, . . . , XM using the

least squares principle to produce an estimated autoregressive coefficient ρ̂w = ρ̂w(M). The

endogenous bandwidths are then defined as

hB = 1.1447

(
4ρ̂2
w

(1− ρ̂w)2(1 + ρ̂w)2
M

)1/3

and hQ = 1.3221

(
4ρ̂2
w

(1− ρ̂w)4

)1/5

(5.3)

for the Bartlett and quadratic spectral kernel, respectively (see also Müller (2005)). The results

in terms of false positive rates were improved when the boundary function is “tuned” to the level
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of serial dependence in the data, i.e. using

gM (k) = c(1)(γ, q)σ̂M

(
1 +

d̂0

M1/2

)(
1 +

k

M

)(
k

k +M

)γ
(5.4)

with d̂0 = ρ̂w/(1 − ρ̂w). Using this tuning parameter the finite sample false positive rates were

improved.

5.1. Simulations under H0

Throughout the presentation below we assume that {εi, i ∈ Z} is a standard normal inno-

vation sequence. In terms of linear time series satisfying H0, we simulated data from an AR(1)

process

Xs = es, es = ρes−1 + εs, 1 ≤ s ≤M + T with ρ = .3, .5, .8,−.3,−.5 and − .8.

as well as an ARMA(1,1) process

Xs = es, es = .5es−1 + εs + .5εs−1.

We report the false positive rates from 5000 independent simulations with ρ = 0.8 in case of

AR(1) generated data in Table 5.2, and for the ARMA(1,1) process in Table 5.3; the results

for the other linear time series considered tended were somewhat better in terms of their false

positive rates.

We observe that in general KQ gave slightly better results when compared to KB . In general

the asymptotic result in Theorem 3.1 is less predictive in finite samples when γ approaches 1/2.

This is expected since Theorem 3.1 does not hold when f(u) = u1/2. However for nearly all

setting of γ the procedure was fairly well sized for these linear time series examples.

We also considered a nonlinear time series model satisfying H0, the GARCH(1,1) model:

Xi = σiεi, σ2
i = .25 + .25X2

i + .5σ2
i−1. (5.5)

The results are given in Table 5.4, we observed similarly strong performance. Although these

data were not serially correlated, the results were not strongly effected by estimating the long

run variance with a kernel based estimator, nor by using the tuned boundary function in (5.4).
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Table 5.2: The empirical sizes of V
(1)
M (k) for the AR(1) model (ei = 0.8ei−1 + εi).

M=100, T=100 M=500, T=500 M=1000, T=1000

Kernel γ\q 0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1

KB

0 0.032 0.082 0.118 0.014 0.050 0.096 0.013 0.049 0.090

0.15 0.030 0.073 0.115 0.013 0.050 0.085 0.012 0.048 0.087

0.25 0.035 0.075 0.113 0.012 0.049 0.090 0.011 0.042 0.092

0.35 0.030 0.073 0.110 0.011 0.046 0.085 0.012 0.043 0.084

0.45 0.025 0.053 0.077 0.014 0.038 0.060 0.009 0.038 0.066

0.49 0.017 0.040 0.058 0.007 0.025 0.044 0.005 0.027 0.046

KQ

0 0.022 0.058 0.096 0.008 0.039 0.078 0.009 0.035 0.079

0.15 0.022 0.055 0.093 0.010 0.035 0.078 0.008 0.039 0.078

0.25 0.024 0.050 0.091 0.012 0.039 0.072 0.008 0.037 0.076

0.35 0.020 0.050 0.079 0.009 0.035 0.065 0.008 0.040 0.071

0.45 0.018 0.039 0.061 0.006 0.026 0.052 0.007 0.027 0.052

0.49 0.011 0.031 0.040 0.003 0.020 0.032 0.003 0.017 0.032
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Table 5.3: The empirical sizes of V
(1)
M (k) for the ARMA(1,1) model (ei = 0.5ei−1 + εi + 0.5εi−1).

M=100, T=100 M=500, T=500 M=1000, T=1000

Kernel γ\q 0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1

KB

0 0.024 0.065 0.110 0.012 0.048 0.094 0.012 0.048 0.093

0.15 0.025 0.067 0.110 0.012 0.049 0.092 0.012 0.049 0.093

0.25 0.025 0.066 0.107 0.012 0.048 0.091 0.013 0.048 0.092

0.35 0.023 0.065 0.101 0.011 0.047 0.087 0.011 0.048 0.089

0.45 0.020 0.052 0.079 0.011 0.039 0.070 0.010 0.040 0.074

0.49 0.014 0.038 0.059 0.006 0.028 0.051 0.006 0.030 0.056

KQ

0 0.016 0.049 0.087 0.009 0.038 0.077 0.008 0.040 0.081

0.15 0.016 0.049 0.086 0.009 0.037 0.075 0.008 0.040 0.080

0.25 0.016 0.048 0.082 0.009 0.036 0.073 0.008 0.038 0.077

0.35 0.015 0.047 0.077 0.008 0.036 0.070 0.007 0.038 0.073

0.45 0.013 0.036 0.059 0.007 0.029 0.055 0.006 0.031 0.060

0.49 0.008 0.025 0.041 0.004 0.019 0.039 0.003 0.021 0.043
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Table 5.4: Size of V
(1)
M (k) for the GARCH(1,1) case (ei = νiεi and ν2i = 0.25 + 0.25e2i−1 + 0.5ν2i−1)

M=100, T=100 M=500, T=500 M=1000, T=1000

Kernel γ\α 0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1

KB

0 0.021 0.073 0.134 0.013 0.050 0.103 0.013 0.055 0.104

0.15 0.024 0.077 0.143 0.013 0.051 0.106 0.014 0.055 0.106

0.25 0.027 0.084 0.144 0.014 0.051 0.105 0.013 0.055 0.109

0.35 0.031 0.091 0.148 0.014 0.058 0.106 0.013 0.063 0.112

0.45 0.038 0.091 0.138 0.022 0.068 0.111 0.024 0.072 0.118

0.49 0.029 0.074 0.113 0.023 0.061 0.101 0.025 0.067 0.111

KQ

0 0.021 0.065 0.117 0.012 0.054 0.105 0.009 0.047 0.101

0.15 0.023 0.070 0.123 0.013 0.055 0.108 0.009 0.049 0.104

0.25 0.027 0.074 0.129 0.014 0.056 0.109 0.011 0.050 0.103

0.35 0.027 0.086 0.131 0.015 0.060 0.116 0.011 0.058 0.105

0.45 0.036 0.087 0.124 0.023 0.066 0.111 0.022 0.065 0.113

0.49 0.029 0.073 0.108 0.020 0.062 0.097 0.024 0.067 0.108
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5.2. Simulations under HA

We also conducted some simulations to study the power of the proposed sequential bubble

detection scheme. We initially consider data generated as described in Example 2.3. We assume

that the mean is constant in both the historical sample and testing period, so we can assume

without loss of generality that it is 0. The data are then generated to follow a stationary AR(1)

process with regression parameter 0.5. The innovations εs are again independent standard normal

random variables. Hence

Xs =


.5Xs−1 + εs, if 1 ≤ s ≤M + k∗

ρMXs−1 + εs, if M + k∗ + 1 ≤ s ≤M + k∗ +B,

(5.6)

where ρM satisfies (2.3). We used the boundary function gM of (5.4). The results are reported

in Tables 5.5–5.7. As it is expected, the power is increasing when M is increasing or aM is

decreasing (getting closer to the stationarity boundary). The sequential detection works well

when k∗ is small, i.e. the change happens immediately of the beginning of the sample.

Figures 5.1 and 5.2 show the densities of the first exceedance time k of the boundary function

gM (k) by V
(1)
M (k). In Figure 5.1, we observe that larger γ gives in general faster detection, while

the opposite relationship holds in Figure 5.2. In general the size of the procedure is improved by

taking smaller values of γ. As a compromise, we use γ = 0.35 in the empirical study.

Figure 5.1: Density estimates of the detection time using V
(1)
M (k) and gM (k) of (5.4) with q = 0.05 under the

alternative (5.6) when k∗ = 0,M = 100, aM = 5 and the long run variance estimator uses KQ.
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Figure 5.2: The densities of the times of crossings of V
(1)
M (k) and gM (k) of (5.4) with q = .05 under the alternative

(5.6) when k∗ = 50,M = 100, aM = 5 and the long run variance estimator uses KQ.
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We proceed to consider the data generated by GARCH(1,1) in Example 2.5.
Xs = σiεi, σ2

i = .25 + .25X2
i + .5σ2

i−1, if 1 ≤ s ≤M + k∗

Xs = σiεi, σ2
i = .25 + αX2

i + .5σ2
i−1, if M + k∗ + 1 ≤ s ≤M + k∗ +B,

(5.7)

where α + 0.5 is close to one. The results are reported in Tables 5.8–5.9. We observe a similar

pattern as the result of the AR(1).

6. Application 1: monitoring for changes in real US GDP

Over the years, there has been intensive debate on whether the U.S. real GDP and other

similar macro-economic production series follow a trend stationary process or a stochastic trend

process. On the one hand, many empirical studies have found evidence in favor of a deterministic

trend, especially when allowing for some structural breaks in the trend line (see Perron (1989);

Diebold and Senhadji (1996); Cheung and Chinn (1997)). On the other hand, evidence has also

been found to support the stochastic trend hypothesis as well (e.g. Nelson and Plosser (1982);

Murray and Nelson (2000)). Thus, we take the position that the real GDP series can possibly

change from a trend stationary process to alternative processes. We demonstrate how to use the
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proposed sequential procedure to monitor for non-stationarities in the real GDP series, which

might be indicative of changes in the trend line or changes to a near unit root process.

We downloaded the quarterly US seasonally adjusted real GDP data from the Federal Reserve

Bank of St. Louis1, and considered monitoring for changes near two recent recession periods2.

Two preprocessing steps were conducted before applying the tests. First, we consider the log

of the real GDP, which is conventional. Second, in order to remove the deterministic trend, we

estimate the trend line only within the training period and then extend the trend to the test

period. After this, we are able to input the detrended series into our monitoring procedure and

check whether the detector goes beyond the boundary at any point during the testing period. The

monitoring procedure was carried out using the detector V
(1)
M and the quadratic spectral kernel

KQ to estimate the long run variance parameter. The boundary function was determined by

(5.4) with q = 0.05, γ = 0.35, and the critical value is calculated using the scale transformation

in Remark 3.1.

Table 6.1 shows the specific information on the selected periods, along with the KPSS statis-

tics and estimated autoregressive coefficients on the detrended series. The KPSS test suggests

that the detrended series in the training periods are reasonably stationary, which meets with

Assumption 2.1. Additionally, the estimated autoregressive parameters in both test periods are

close to one. The results of the application to each period are detailed in the subsections below.

6.1. Period I: Q1 1985 to Q4 2001

The training period is set to be from Q1 1985 to Q4 1994, containing ten years worth of data (40

quarterly observations). We choose to monitor the detector from Q1 1995 until Q4 2001. The

choice of the initial date in the test period is due to our attempt to find any early warning signal

in the economy before the recession in 2001. The upper panel and middle panel in Figure 6.1

show the log series and detrended series of the U.S. real GDP, respectively. As can be observed,

the detrended series were fluctuating around zero in the training period, but started to climb up

after 1996 and reached a peak in 2000. The lower panel in Figure 6.1 presents the trajectory of

the detector V
(1)
40 against the boundary function g40(k). The detector goes beyond the boundary

in Q3 1999 for the first time. Given that the procedure used is powerful against changes in the

1https://fred.stlouisfed.org/series/GDPC1
2According the National Bureau of Economic Research, the recent two recessions are during March 2001 to

November 2001 and during December 2007 and June 2009.
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Table 6.1: Description of detrended U.S. real GDP data in each period considered, including the time spans

associated with each training and testing sets, the values of KPSS test statistics, and estimated AR(1) coefficients.

Time Span KPSS Stat ρ̂

Period I

Training Q1 1985 – Q2 1994 0.166
0.901

(0.062)

Test Q1 1995 – Q4 2001 0.908∗∗∗
0.944

(0.041)

Period II

Training Q1 2002 – Q4 2006 0.095
0.632

(0.188)

Test Q1 2007 – Q4 2011 0.703∗∗
0.946

(0.042)

Note: the setting of the KPSS test used does not include a linear trend component, and the bandwidth is set to b4(N/100)1/4c.

The numbers in parentheses are the standard error of the estimation. KPSS critical values are 0.347 (10% level), 0.463 (5%

level), 0.739 (1% level) in this setting. ∗∗∗ and ∗∗ indicate values significant to the 1% and 5% significance level of the

asymptotic distribution.

mean as well as changes to stochastic trends, this result suggests that either the trend changed

during the monitoring period, or the series begins to follow an approximate unit root process.

6.2. Period II: Q1 2002 to Q4 2011

The initial date in the training period is set to be Q1 2002, which is right after the end of Period

I. The most recent recession due to subprime mortgage crisis started at the end of 2007. For

the purpose of attempting to find possible early warning signs, we start to monitor for changes

starting from Q1 2007. There are 20 quarterly observations in the training period between Q1

2002 and Q4 2006, and 20 observations in the test period between Q1 2007 and Q4 2011. The

log U.S. real GDP with trend and detrended are shown in the upper panel and middle panel of

Figure 6.2. The detrended series is fluctuating around zero, but it started to continuously decline

from Q1 2007. The lower panel of Figure 6.2 plots the trajectory of the detector V
(1)
20 against

the boundary function g20(k). The detector goes beyond the boundary in Q4 2007 for the first

time.
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Figure 6.1: Upper panel: log of U.S. real GDP during Q1 1985 to Q4 2001 and the trend in the training period

with extension to the test period. Middle Panel: detrended log of U.S. real GDP. Lower Panel: real-time Detector

V
(1)
40 versus the boundary function g40(k) in the test period. The vertical dash line indicates the division between

the training and test samples.
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Figure 6.2: Upper panel: log of U.S. real GDP during Q1 2002 to Q4 2011 and the trend in the training period

with extension to the test period. Middle Panel: detrended log of U.S. real GDP. Lower Panel: real-time Detector

V
(1)
20 versus the boundary function g20(k) in the test period. The vertical dash line indicates the division between

the training and test samples.
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7. Application 2: monitoring for changes in volatility in the S&P 500

Time series of price–to–fundamentals ratios are commonly used to test for the presence of

stock market bubbles. Following Phillips et al. (2011, 2015a), we consider monitoring the price–

to–dividend (P/D) ratio of the S&P 500 stock market index. Namely, with Pt denoting the

S&P 500 stock price index, and Dt denoting the real S&P 500 stock price index dividend, we

monitor the series P/Dt := Pt/Dt. The monthly dividend data are computed from the S&P

500 four-quarter totals for the quarter since 1926, with linear interpolation to obtain monthly

figures. The specific data we used was downloaded from Professor Robert Shiller’s website3,

which is further described in Chapter 26 of Shiller (1992). Since we require that the data

are approximately stationary during the training sample, we study the first differenced series

dP/Dt = P/Dt−P/Dt−1. This analysis is then aiming to detect changes in the volatility of the

series.

We considered monitoring for changes in volatility during two historical periods: The dot-com

bubble, with data spanning from January 1988 to December 1999, and with recent data, spanning

from January 2011 to March 2019. We refer to these respective periods as Period 1 and Period 2

below. The series dP/Dt from each of these periods were divided into training and testing sets,

and the validity of Assumption 2.1 for each training sample was evaluated by an application of

the KPSS test. This information along with some further summary information from the samples

relevant for the proposed procedures is contained in Table 7.1. In each case the training samples

were found to be reasonably stationary. The estimated GARCH(1,1) parameters suggest that

the test sample in Period 1 is non-stationary and the test sample in Period 2 is stationary. Thus,

we expect that the detector will go across the boundary in Period 1 but not in Period 2. The

monitoring procedure was carried out using the detector V
(1)
M and the quadratic spectral kernel

KQ to estimate the long run variance parameter. The boundary function was determined by

(5.4) with q = 0.05, γ = 0.35, and the critical value is calculated using the scale transformation

in Remark 3.1. The results of the application to each period are detailed in the subsections

below.

7.1. Period 1: Jan 1988 to Dec 1999

The training period was set to be from January 1988 to December 1994, constituting 84 observa-

3http://www.econ.yale.edu/~shiller/data.htm
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Table 7.1: Description of data in each period considered, including the time spans associated with each training

and testing sets, the values of KPSS test statistics, and estimated GARCH(1,1) coefficients using Quasi-maximum

likelihood estimation.

Time Span KPSS Stat ω̂ α̂ β̂ α̂+β̂

Period 1

Training Jan 1988 – Dec 1994 0.068
0.053 0.040 0.873

0.913
(0.092) (0.046) (0.172)

Test Jan 1995 – Dec 1999 0.053
0.185 0.196 0.804

1.000
(0.314) (0.146) (0.145)

Period 2

Training Jan 2011 – Dec 2015 0.097
0.642 0.303 0.424

0.727
(0.632) (0.254) (0.417)

Test Jan 2016 – Mar 2019 0.112
0.402 0.311 0.485

0.796
(0.575) (0.311) (0.551)

Note: the setting of the KPSS test used does not include a linear trend component, and the bandwidth is set to b4(N/100)1/4c.

The numbers in parentheses are the standard error of the estimation. KPSS critical values are 0.347 (10% level), 0.463 (5%

level), 0.739 (1% level) in this setting. ∗∗∗ and ∗∗ indicate values significant to the 1% and 5% significance level of the

asymptotic distribution.

tions. We chose the training period in order to avoid the Black Monday market crash in October

1987. We then took the test period to be from January 1995 to December 1999, which contains

the formation of the infamous dot-com bubble. The upper panel of Figure 7.1 shows a plots of

the series dP/Dt during this period. It is observed that the dP/Dt is stable during the training

period. The dP/Dt begins to become volatile from January 1997, with a clear growing volatility

till the end of 1999.

The lower panel of Figure 7.1 shows the trajectory of the detector V
(1)
84 against the boundary

function g84(k). The detector exceeds the boundary in January 1997 for the first time, indicating

the presence of a change on that day. This date was approximately three years before the

traditionally accepted date of the bursting of the dot-com bubble early in the year 2000. This

appears to be similar to Example 2.5 modelling a GARCH(1,1) that changes from stationarity

to non-stationarity.

7.2. Period 2: Jan 2011 to Mar 2019

The upper panel of Figure 7.2 plots the time series trajectories of the fist order difference of

33



1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000
-10

-5

0

5

10
First-Differenced Price-Dividend Ratio

1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000
0

20

40

60
Real-time Detector

Boundary

Detector

Figure 7.1: Upper panel: Price-dividend ratio of the S&P 500 during 1995 Jan to 1999 Dec. Lower Panel: Real-

time Detector V
(1)
84 versus the boundary function g84(k) in the test period. The vertical dash line indicates the

division between the training and test samples.

the P/D ratio during the second example period. The training period is set to be from January

2011 to December 2015, containing 60 observations. The choice of the initial date of the training

sample is meant to avoid the subprime mortgage crisis in 2008. Except for the outlier at August

2011, the dP/Dt is relatively stable in the training sample. The test period we took to be

from January 2016 to March 2019. The dP/Dt seems to have the same level of volatility as

the training period. As in the previous example, we present the trajectory of the detector V
(1)
60

and the boundary function g60(k) in the lower panel of Figure 7.2. The detector never crossed

the boundary function during the testing period, indicating that no change would have been

detected during the testing period. This result can be interpreted to mean that the increasing

trend visible in the P/D ratio in the testing sample is consistent, at level 5% with the fluctuations

observed in the P/D ratio in the test sample.
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Figure 7.2: Upper panel: Price-dividend ratio of the S&P 500 during 2011 Jan to 2019 Mar. Lower Panel: Real-

time Detector V
(1)
60 versus the boundary function g60(k) in the test period. The vertical dash line indicates the

division between the training and test samples.
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8. Proofs of Technical Results

We start with a simple lemma.

Lemma 8.1. If Assumption 3.4 holds, then for all 0 ≤ γ < 1/2 and x > 0 we have that

lim
a→0

lim sup
M→∞

P

{
Mγ−1/2 max

1≤k≤aM
k−γ

∣∣∣∣∣
k∑
`=1

(X` − EX`)

∣∣∣∣∣ > x

}
= 0.

Proof. Let ln denote the logarithm function to base 2 and ei = Xi −EXi. It is easy to see that

max
1≤k≤aM

k−γ

∣∣∣∣∣
k∑
`=1

e`

∣∣∣∣∣ ≤ max
1≤i≤ln(aM)+1

max
2i−1<k≤2i

k−γ

∣∣∣∣∣
k∑
`=1

e`

∣∣∣∣∣
≤ max

1≤i≤ln(aM)+1
max

2i−1<k≤2i
2−(i−1)γ

∣∣∣∣∣
k∑
`=1

e`

∣∣∣∣∣ .
Assumption 3.4 and Móricz et al. (1982) yield that

E

(
max

1≤k≤2i

∣∣∣∣∣
k∑
`=1

e`

∣∣∣∣∣
)
≤ C12iν/2

with some constant C1. Hence by Markov’s inequality we have

P

{
Mγ−1/2 max

1≤k≤aM
k−γ

∣∣∣∣∣
k∑
`=1

e`

∣∣∣∣∣ > x

}
≤

ln(aM)+1∑
i=1

P

{
max

2i−1<k≤2i
k−γ

∣∣∣∣∣
k∑
`=1

e`

∣∣∣∣∣ > xM1/2−γ

}

≤
ln(aM)+1∑

i=1

P

{
max

1≤k≤2i

∣∣∣∣∣
k∑
`=1

e`

∣∣∣∣∣ > x2(i−1)γM1/2−γ

}

≤ C1x
−νM (γ−1/2)ν

ln(aM)+1∑
i=1

2−(i−1)γν2iν/2

≤ C1
21/2

2(−γ+1/2)ν
a(1/2−γ)ν ,

completing the proof.

Proof of Theorem 3.1. It follows from Assumptions 2.1 and H0 that for all a > 0 that

max
aM≤k≤T

Z
(1)
M (k)

M1/2(1 + k/M)f(k/(k +M))

D→ sup
a≤t≤θ/(1−θ)

σ|W2(t)− tW1(1)|
(1 + t)f(t/(1− t))

, (8.1)

where W1, and W2 are independent Wiener processes. Using Assumption 3.1 and the law of the

iterated logarithm for W2 we get that

lim
a→0

max
0<t≤a

|W2(t)|
(1 + t)f(t/(1− t))

= 0 a.s. (8.2)
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and

lim
a→0

max
0<t≤a

|tW1(t)|
(1 + t)f(t/(1− t))

= 0 a.s. (8.3)

Lemma 8.1 yields that

lim
a→0

lim sup
M→∞

P

{
max

1≤k≤aM

|SM,2(k)|
M1/2(1 + k/M)f(k/(k +M))

> x

}
= 0 for all x (8.4)

and

lim
a→0

lim sup
M→∞

P

{
max

1≤k≤aM

(k/M)|SM,1(k)|
M1/2(1 + k/M)f(k/(k +M))

> x

}
= 0 for all x. (8.5)

Since we can choose a as small as we wish in (8.1), we obtain from (8.2)–(8.5) that

max
1≤k≤T

Z
(1)
M (k)

M1/2(1 + k/M)f(k/(k +M))

D→ sup
0≤t≤θ/(1−θ)

σ|W2(t)− tW1(1)|
(1 + t)f(t/(1 + t))

. (8.6)

It is well known that

{W2(t)− tW1(1), 0 ≤ t <∞} D
= {(1 + t)W (t/(1 + t)), 0 ≤ t <∞} , (8.7)

where W denotes a Wiener process. Hence

sup
0≤t≤θ/(1−θ)

|W2(t)− tW1(1)|
(1 + t)f(t/(1 + t))

D
= sup

0≤t≤θ

|W (t)|
f(t)

,

and therefore (3.5) follows from (8.6) and Assumption 3.3.

Since

max
1≤k≤aM

k−γ

∣∣∣∣∣1k
k∑
`=1

(
SM,2(`)− `

M
SM,1(M)

)∣∣∣∣∣ ≤ max
1≤k≤aM

k−γ max
1≤`≤k

∣∣∣∣SM,2(`)− `

M
SM,1(M)

∣∣∣∣
≤ max

1≤k≤aM
max

1≤`≤k
`−γ

∣∣∣∣SM,2(`)− `

M
SM,1(M)

∣∣∣∣
≤ max

1≤`≤aM
`−γ

∣∣∣∣SM,2(`)− `

M
SM,1(M)

∣∣∣∣ ,
by (8.4) and (8.5) we have

lim
a→0

lim sup
M→∞

P

{
max

1≤k≤aM

Z
(2)
M (k)

M1/2(1 + k/M)f(k/(k +M))
> x

}
= 0 for all x. (8.8)

Using again Assumptions 2.1 and H0 we get that

max
aM≤k≤T

Z
(2)
M (k)

M1/2(1 + k/M)f(k/(k +M))
(8.9)

D→ sup
a≤t≤θ/(1−θ)

σ|W2(t)− tW1(1)− (1/t)
∫ t

0
(W2(u)− uW1)du|

(1 + t)f(t/(1 + t))
,
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where W1 and W2 are independent Wiener processes. It follows from (8.2) and (8.3) that

lim
a→0

sup
0<t≤a

|W2(t)− tW1(1)− (1/t)
∫ t

0
(W2(u)− uW1)du|

(1 + t)f(t/(1 + t))
= 0 a.s. (8.10)

Putting together (8.8)–(8.10) we conclude

max
1≤k≤T

Z
(2)
M (k)

M1/2(1 + k/M)f(k/(k +M))
(8.11)

D→ sup
0≤t≤θ/(1−θ)

σ|W2(t)− tW1(1)− (1/t)
∫ t

0
(W2(u)− uW1)du|

(1 + t)f(t/(1 + t))
,

and therefore (3.6) follows from Assumption 3.2 and (8.7).

8.1. Proof of Theorems 4.1–4.5

It is assumed in Section 4 that Xi is constant and therefore we can assume without loss of

generality that EXi = 0.

We start with the proof of Theorem 4.1. The recursion in (2.2) can be solved explicitly and

we get

bt =

t−1∑
`=1

ρ`M εt−` + ρtMb0, 1 ≤ t ≤ B,

where b0 = ηk∗ . First we establish an upper bound for bt.

Lemma 8.2. If (2.2), (2.3) and Assumption 4.1 hold, then we have that

max
1≤t≤B

t−1/κ|bt| = O (M/aM ) a.s.

Proof. It is well known that Assumption 4.1 implies that

|εt| = o
(
t1/κ

)
a.s.

(cf. Chow and Teicher (1988)) and therefore

max
1≤t≤B

t−1/κ|bt| ≤ max
1≤t≤B

t−1/κ|εt|
∞∑
`=1

(
1− aM

M

)`
.

According to (2.3)
∞∑
`=1

(
1− aM

M

)`
= O (M/aM ) ,

the lemma is proven since

max
1≤t≤B

|ρtMb0| = O(1) a.s.
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Lemma 8.3. If (2.2), (2.3) and Assumption 4.1 hold, then one can define a Wiener process W

such that

max
1≤t≤B

t−1/κ

∣∣∣∣∣(1− ρM )

t∑
s=1

bs − (Eε20)1/2W (t)

∣∣∣∣∣ = O(1) a.s.

Proof. Computing the sum of both sides of equation (2.2) we obtain that

t∑
s=1

bs = ρM

t∑
s=1

bs +

t∑
s=1

εs,

and therefore

(1− ρM )

t∑
s=1

bs =

t∑
s=1

εs + b0 − bt. (8.12)

By the Komlós–Major–Tusnády approximation (cf. Csörgő and Révész (1981)) one can define a

Wiener process W (t), t ≥ 0 such that∣∣∣∣∣
t∑

s=1

εs − (Eε20)1/2W (t)

∣∣∣∣∣ = o(t1/κ) a.s. (8.13)

Now the result follows from Lemma 8.3, (8.12) and (8.13).

Proof of Theorem 4.1. We consider the detector V
(1)
M (k) only, the behaviour the detector

V
(2)
M (k) can be analysed similarly. In order to establish parts (i) and (ii), let

JM =

k
∗ + 2, in case of part (i),

JM (1−2γ)/(3−2γ) in case of part (ii),

for some constant J > 0. We note that

P{τM > JM} = P

{
max

1≤k≤JM
V

(1)
M (k)/(M1/2(1 + k/M)f(k/(k +M))) < c

}
and according to Theorem 3.1

UM = max
1≤k≤k∗

V
(1)
M (k)/(M1/2(1 + k/M)f(k/(k +M))) = oP (1). (8.14)

We observe that

lim
M→∞

P{τM > JM}

= lim
M→∞

P

{
max

(
UM , max

k∗+1≤k≤JM

∣∣∣∣∣ kM
M∑
`=1

X` −
k∗+M∑
`=M+1

X` −
M+k∑

`=M+k∗+1

X`

∣∣∣∣∣ 1

M1/2(k/M)γ

)
< cδfσ

}
.

It is easy to see that

max
k∗+1≤k≤JM

∣∣∣∣∣ kM
M∑
`=1

X`

∣∣∣∣∣ 1

M1/2(k/M)γ
= OP (1) max

k∗+1≤k≤JM

(
k

M

)1−γ

= oP (1) (8.15)
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and similarly

max
k∗+1≤k≤JM

∣∣∣∣∣
k∗+M∑
`=M+1

X`

∣∣∣∣∣ 1

M1/2(k/M)γ
= oP (1). (8.16)

It follows from (8.12) that

max
k∗+1≤k≤JM

∣∣∣∣∣
k+M∑

`=M+k∗+1

X`

∣∣∣∣∣ 1

M1/2(k/M)γ

=
1

1− ρM
max

k∗+1≤k≤JM

∣∣∣∣∣
k−k∗∑
`=1

ε` + b0 − bk−k∗
∣∣∣∣∣ 1

M1/2(k/M)γ

=
M1/2+γ

aM
max

k∗+1≤k≤JM

∣∣∣∣∣
k−k∗∑
`=1

ε` + b0 − bk−k∗
∣∣∣∣∣ k−γ

≥ M1/2+γ

aM

∣∣∣∣∣
JM−k∗∑
`=1

ε` + b0 − bJM−k∗
∣∣∣∣∣ J−γM

=
M1/2+γ

aMJ
γ
M

|ZM + b0| , (8.17)

where

ZM =

JM−k∗∑
`=1

ε` −
JM−k∗−1∑

`=1

ρ`M εJM−k∗−` =

JM−k∗∑
`=1

z`,M

with

z`,M = (1− ρ`M )εJM−k∗−`.

We note that the zj,`’s, 1 ≤ ` ≤ JM are independent mean zero random variables, and so

E

(
JM−k∗−1∑

`=1

z`,M

)2

=

JM−k∗−1∑
`=1

σ2
ε (1− ρ`M )2.

In case of part (i) with JM = k∗ + 2, it is clear that since aM/M → 0, ZM
P→ 0. Further

since P (b0 = 0) = 0, the result follows from (8.16) since aM/M
(1/2+γ) → 0.

In case of part (ii), where we take JM = JM (1−2γ)/(3−2γ), we note that due to (4.7) for M

sufficiently large we have that

JM
aM
M
≤ JM (1−2γ)/(3−2γ)−1M1/2+γ (8.18)

= JM−(2γ−1)2/2(3−2γ) → 0,
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as M →∞. Furthermore, we have by the mean value theorem that

0 ≤ 1− ρ`M = ep`,M (−` log(ρM )), with ` log(ρM ) ≤ p`,M ≤ 0. (8.19)

It now follows from a two term Taylor series expansion for log(1− x) about zero and (8.18) that

max
1≤`≤JM

|` log(ρM )| → 0, as M →∞.

It follows then from (8.19) that

max
1≤`≤JM

∣∣∣∣ 1− ρ`M
`(aM/M)

− 1

∣∣∣∣→ 0, as M →∞,

from which we obtain that(
JM−k∗−1∑

`=1

σ2
ε (1− ρ`M )2

)(
JM−k∗−1∑

`=1

σ2
ε `

2(aM/M)2

)−1

→ 1,

as M →∞.

This then establishes that

lim
M→∞

E(JM−k∗−1∑
`=1

z`,M

)2
1/2 (

σ2
εJ

3
M (aM/M)2/3

)−1/2
= 1

It may be shown in a similar fashion that(
JM−k∗−1∑

`=1

E|z`,M |κ
)1/κ

= O
(aM
M

J
1+1/κ
M

)
.

So using Lyapunov’s theorem for arrays of independent and identically distributed random vari-

ables (see pg. 126 of Petrov (1995)) we obtain that(
σ2

3
J3
M

(aM
M

)2
)−1/2 JM−k∗∑

`=1

z`,M
D→ N,

where N stands for a standard normal random variable. Observing that

M1/2+γ

aM
J−γM

aM
M

J
3/2
M = J (1−2γ)/(3−2γ)

and J can be as large as we wish, (ii) is established.

(iii) First we consider τM based on V
(1)
M (k). We can assume that xAM ≥ k∗ + 1. We note

P{τM > xAM} = P

{
max

1≤k≤xAM

V
(1)
M (k)/(M1/2(1 + k/M)f(k/(k +M))) < c

}
.
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Next we write

lim
M→∞

P{τM > xAM}

= lim
M→∞

P

{
max

(
UM , max

k∗+1≤k≤xAM

∣∣∣∣∣ kM
M∑
`=1

X` −
k∗+M∑
`=M+1

X`

−
M+k∑

`=M+k∗+1

X`

∣∣∣∣∣ 1

M1/2(k/M)γ

)
< cδfσ

}

with UM of (8.14). Similarly to (8.15) and (8.16)

max
k∗1≤k≤xAM

∣∣∣∣∣ kM
M∑
`=1

X`

∣∣∣∣∣ 1

M1/2(k/M)γ
= oP (1)

and

max
k∗+1≤k≤xAM

∣∣∣∣∣
k∗+M∑
`=M+1

X`

∣∣∣∣∣ 1

M1/2(k/M)γ
= oP (1)

for all x > 0. Thus by Lemma 8.3 we have

1

AM
max

k∗+1≤k≤xAM

V
(1)
M (k)

gM (k)
=

|
∑k+k∗

i=k∗ Xi|
σcδfAMM1/2(k/M)γ

(1 + oP (1))

= max
0≤u≤xAM

(Eε20)1/2 |W (u)|
uγ

Mγ−1/2

σcδf (1− ρM )AM
(1 + oP (1)).

with a suitably chosen Wiener process W . By the scale transformation of the Wiener process we

have

max
0≤u≤xAM

|W (u)|
uγ

D
= x1/2−γA

1/2−γ
M max

0≤t≤1

|W (t)|
tγ

,

and by the choice of AM and ρM

A
1/2−γ
M

Mγ−1/2

(1− ρM )AM
= 1, (8.20)

and therefore (4.13) is proven.

Following the proof of 4.13 one can verify that

1

AM
max

1≤k≤xAM

V
(2)
M (k)

gM (k)
=
|
∑k+k∗

i=k∗ Xi − 1
k |
∑k
`=k∗

∑`
i=k∗ X`||

σcδfAMM1/2(k/M)γ
(1 + oP (1))

= max
0≤u≤xAM

(Eε20)1/2 |W (u)− 1
u

∫ u
0
W (y)dy|

uγ
Mγ−1/2

σcδf (1− ρM )AM
(1 + oP (1)).
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Using again the scale transformation of the Wiener process we conclude

max
0≤u≤xAM

|W (u)− 1
u

∫ u
0
W (y)dy|

uγ
D
= (xAM )1/2−γ sup

0≤t≤1
t−γ

∣∣∣∣W (t)− 1

t

∫ t

0

W (u)dy

∣∣∣∣ ,
so the last part of the theorem follows from (8.20).

Proof of Theorem 4.2. Proof of Theorem 4.2, we follow the proof of Theorem 4.1. Since the

calculations in (8.14)-(8.16) only involve random variables before the change, they remain true

under (4.15). Clearly, (8.17) also holds. As before, if JM = k∗ + 2, ZM
P→ 0 on account of

aM/M → 0. Observing that in the present case we also have aM/M
(1/2+γ) → 0, the proof of

part (i) is established.

The proof of the next two cases are based on the following modification of Lemma 8.1. Assume

that P (b0 = 0) = 1 and let C > 0. Then we have

max
1≤t≤CM/aM

t−1/κ|bt| = O(M/aM ) a.s. (8.21)

According to the proof of Lemma 8.1,

max
1≤t≤CM/aM

t−1/κ|bt| 6 max
1≤t≤CM/aM

t−1/κ|bt|
CM/aM∑
`=1

(
1 +

aM
M

)`
.

Using (4.15) and observing that

CM/aM∑
`=1

(
1 +

aM
M

)`
6
CM/aM∑
`=1

e`aM/M 6
∫ CM/aM+1

1

exaM/Mdx 6
M

aM

∫ C+aM/M

0

exdx,

(8.21) is proven. Hence we can repeat the calculations in the proof of Theorem 4.1 as long as

JMaM/M is bounded. Hence, we need to establish the last part of Theorem 4.2. Let

JM = C

(
M

aM

)
logM

Following the calculations in (8.17) we get that on account of b0 = 0 that

max
k∗+16k6JM

∣∣∣∣∣
k+M∑

`=M+k∗+1

X`

∣∣∣∣∣ 1

M1/2(k/M)γ
>
M1/2+γ

aMJ
γ
M

∣∣∣∣∣
JM−k∗∑
`=1

ε` − bJM−k∗
∣∣∣∣∣ .

Next we note that ∣∣∣∣∣
JM−k∗∑
`=1

εl

∣∣∣∣∣ = Op(J
1/2
M ).
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For any T = TM

bT =

T−1∑
`=1

(
1 +

aM
M

)`
εT−`

=
(

1 +
aM
M

)T T−1∑
`=1

(
1 +

aM
M

)`−T
εT−`

=
(

1 +
aM
M

)T T−1∑
s=1

 1

1 +
aM
M

s

εs

=
(

1 +
aM
M

)T T−1∑
s=1

(
1− CM

M

)s
εs,

where CM =
(
1 + aM

M

)
aM and therefore CM →∞ and CM/M →∞. Let

S(u) =

u∑
`=1

ε` and S(0) = 0.

By Abel’s summation formula

T−1∑
s=1

(
1− CM

M

)s
εs =

T−1∑
s=1

(
1− CM

M

)s
[S(s)− S(s− 1)]

=

T−2∑
s=1

S(t)

[(
1− CM

M

)t
−
(

1− CM
M

)t−1
]

+

(
1− CM

M

)T−1

S(T − 1)

= −CM
M

T−2∑
s=1

S(t)

(
1− CM

M

)t−1

+

(
1− CM

M

)T−1

S(T − 1).

Using now (8.13) we get that

T−2∑
s=1

∣∣∣S(t)− (Eε2
0)1/2W (t)

∣∣∣ (1− CM
M

)t−1
a.s.
== O

( ∞∑
t=1

t1/κe−tCM/M

)
and

∞∑
t=1

t1/κe−tCM/M = O

((
M

CM

)1+1/κ
)
.

Thus we get with probability one that

(
1 +

aM
M

)−T
bT =

T−1∑
`=1

(
1− CM

M

)s (
Eε2

0

)1/2
n` +O

((
M

aM

)1/κ
)

+O
(
T 1/κe−TaM/M

)
.

where {ni, i > 1} are independent standard normal random variables.

Observing that J
1/κ
M e−JMaM/M → 0 and(

M

aM

)−1/2 T−1∑
`=1

(
1− CM

M

)s (
Eε2

0

)1/2
n`

D→ N(0, τ2)
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with some τ > 0 and N(0, τ2) is a normal random variable with zero mean and variance τ2. It

is easy to see that

M1/2+γ

aMJ
γ
M

(
1 +

aM
M

)JM (M

aM

)1/2

→∞

assuming that C is large enough, the proof of Theorem 4.2 is completed.

Lemma 8.4. If (2.4), (4.17)–(4.20) and Assumption 4.1 hold, then we have that

max
1≤t≤B

t−1/κ|bt| = O (M/aM ) a.s. (8.22)

and there is a Wiener process W (u), u ≥ 0 such that

max
1≤t≤B

∣∣∣∣∣(1− ρM )

t∑
s=1

bs − (Eε20)1/2(1 + α1 + · · ·+ αq)W (t)

∣∣∣∣∣ = O(1) a.s. (8.23)

Proof. Let

ηt = (bt, bt−1, . . . , bt−p)
>, εt =

(
εt +

q∑
`=1

α`εt−`, 0, . . . , 0

)>
∈ Rp+1

and

A =


β1 β2 β3 . . . βp−1 βp

1 0 0 . . . 0 0
...

...
...

...
...

...

0 0 0 . . . 1 0

 .

Now (2.4) can be written as

ηt = Aηt−1 + εt, t = 1, 2, . . .

and therefore

ηt = Atη0 +

t−1∑
`=0

A`εt−`.

We note that that det(A − tIn) = tpϕ(t) (In denotes the n × n identity matrix) and therefore

the eigenvalues of A are 1/r1,M , 1/r2,M , . . . , 1/rp,M . Since the eigenvalues of A are distinct, we

can find a nonsingular matrix T such that

A = TΛT−1,

where Λ is a diagonal matrix with 1/ri,M in the diagonal (cf. Exercise 7.32 on page 171 in Abadir

and Magnus (2005)). Hence

At = TΛtT−1. (8.24)
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Let ‖ · ‖ denote the Euclidean norm of vectors and matrices. It follows from assumptions (4.17)–

(4.20) and (8.24) that

‖Atη0‖ ≤ C1

(
1− aM

M

)t
‖η0‖

with some constant C1. Hence we obtain the decomposition

bt =

t∑
s=0

wsεt−s + zt, |ws| ≤ C2(1− aM/M)s and |zt| ≤ C3(1− aM/M)t|b0|, (8.25)

where C2 and C3 are constants. By the mean value theorem, 1 − ρM = 1 − (β1 + · · ·βp) =

ϕ(1) − ϕ(r1,M ) = ϕ′(ξM )(1 − r1,M ) = −ϕ′(ξM )aM/M, with ξM ∈ [1, 1 + aM/M ]. Clearly then

ξM → 1 as M → ∞, and since all roots other than r1,M of ϕ are bounded away from one,

limM→∞ ϕ′(1) 6= 0. Hence 1− ρM = O(aM/M).

It follows from (2.4) that

(1− ρM )

t∑
s=1

bs = (1 + α1 + · · ·+ αq)

t∑
s=1

εt (8.26)

+

p∑
`=1

β`[(b0 + . . .+ b−`+1)− (bt + bt−1 + . . .+ bt−`+1)]

+

q∑
`=1

α`[(ε0 + . . .+ ε−`+1)− (εt + . . .+ εt−`+1)].

Due to (8.25) and (8.26), the results (8.22) and (8.23) can be established along the lines of the

proofs of Lemmas 8.2 and 8.3, respectively.

Proof of Theorem 4.3: Theorem 4.3 now follows as Theorem 4.1 with Lemma 8.4 replacing

Lemmas 8.2 and 8.3.

We now turn to the proof of Theorem 4.4, which utilizes the following lemmas:

Lemma 8.5. If (4.21), (4.22), (4.24) and Assumptions 2.1 hold, JM →∞, then we have that

1

σεJ
5/2
M

∣∣∣∣∣
JM∑
t=1

bt

∣∣∣∣∣ D→
∣∣∣∣∫ 1

0

∫ u

0

W (s)dsdu

∣∣∣∣ ,
where W denotes a Wiener process.

Proof. We follow the proof of Lemma 8.4. Let ηt = (bt, bt−1)>, εt = (εt, 0)> and

A =

2β −β2

1 0

 .
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Now the recursion in (4.21) can be written as

ηt = Aηt−1 + εt, t ≥ 1 and therefore ηt = Atη0 +

t−1∑
`=0

A`εt−`,

It is easy to see that β is the eigenvalue of A with algebraic multiplicity 2 and geometric multi-

plicity 1. Hence A cannot be diagonalized but in can be written in Jordan form (cf. Abadir and

Magnus (2005)). There is a non–singular matrix T such that

A = TΛT−1

with

Λ =

β 1

0 β

 and T =

β β + 1

1 1


(cf. Exercise 7.90 in Abadir and Magnus (2005)). Hence

At = TΛtT−1

and using mathematical induction one can show that

Λ =

βt tβt−1

0 βt

 , t = 1, 2, . . .

Hence we get that

bt = (1 + t)βtb0 − tβt+1b−1 +

t−1∑
s=0

(s+ 1)βsεt−s.

Let J = JM . It is easy to see that

max
1≤t≤J

∣∣(1 + t)βtb0 − tβt+1b−1

∣∣ = OP (J). (8.27)

Let S(0) = 0, S(`) = ε1 + ε2 + . . .+ ε`, ` ≥ 1. It is easy to see that for all t ≥ 1 we have by Abel’s

summation formula that with u` = (t− `+ 1)βt−`+1, 1 ≤ ` ≤ t

t−1∑
s=0

(s+ 1)βsεt−u =

t∑
`=1

(`+ 1)βt−`+1ε`

= utS(t) +

t−1∑
`=1

S(`)(u` − u`+1)

= βS(t) +

t−1∑
`=1

S(`)βt−` +

t−1∑
s=1

S(`)(βt−` − βt−`+1)

=

t−1∑
`=1

S(`) + βS(t) +

t−1∑
`=1

S(`)(βt−` − 1) +

t−1∑
s=1

S(`)(βt−` − βt−`+1).
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It follows from Assumption 4.1 and the weak convergence of partial sums that

max
1≤t≤J

|βS(t)| = OP (J1/2). (8.28)

Let

SJ(u) =


0, if 0 ≤ u < 2/J

1

σεJ3/2

bJuc−1∑
`=1

S(`), if 2/J ≤ u ≤ 1.

Using again Assumption 4.1 and the weak convergence of partial sums we get that

SJ(u)
D[0,1]−→

∫ u

0

W (s)ds, (8.29)

where W denotes a Wiener process. Using (4.24) we conclude that

max
2≤t≤J

∣∣∣∣∣
t−1∑
`=1

S(`)(βt−` − 1)

∣∣∣∣∣ ≤ caMM max
2≤t≤J

t−1∑
`=1

(t− `)|S(`)|

and

max
2≤t≤J

∣∣∣∣∣
t−1∑
`=1

S(`)(βt−` − βt−`+1)

∣∣∣∣∣ ≤ caMM max
2≤t≤J

t−1∑
`=1

|S(`)|

with some constant c. Similarly to (8.29) one can show that

1

σεJ5/2
max

2≤t≤J

t−1∑
`=1

(t− `)|S(`)| D→ max
0≤u≤1

∫ u

0

(u− s)|W (s)|ds

and

1

σεJ3/2

J−1∑
`=1

|S(`)| D→
∫ 1

0

|W (s)|ds

and therefore by (4.24) we obtain that

max
2≤t≤J

∣∣∣∣∣
t−1∑
`=1

S(`)(βt−` − 1)

∣∣∣∣∣ = oP (J3/2) (8.30)

and

max
2≤t≤J

∣∣∣∣∣
t−1∑
`=1

S(`)(βt−` − βt−`+1)

∣∣∣∣∣ = oP (J3/2). (8.31)

Let

bJ(u) =
1

σεJ3/2
bbJuc 0 ≤ u ≤ 1.

Putting together (8.27)–(8.31) we get that

bJ(u)
D[0,1]−→

∫ u

0

W (s)ds,

where W is a Wiener process. Thus Lemma 8.5 is implied by the continuous mapping theorem.
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Proof of Theorem 4.4. First we note that (4.25) implies that JM →∞. According to the proof

Theorem 4.1, we need to show only that∣∣∣∣∣
JM∑
t=1

bt

∣∣∣∣∣
M1/2((k∗ + JM )/M)γ

P→ ∞. (8.32)

Putting together Lemma 8.5 with (4.3) and (4.25), we obtain immediately 8.32 for the detector

V
(1)
M (k). Similar arguments can be used in case of V

(2)
M (k).

Proof of Remark 4.1. It follows as in the above calculations that

lim
M→∞

P (τM > xM1/5) = lim
M→∞

P

(
max

1≤k≤xM1/5−k∗

∣∣∣∣∣M−1/2
k∑
t=1

bt

∣∣∣∣∣ < cσδf

)
.

As in Lemma 8.5, we have that

M−1/2

buM1/5c∑
t=1

bt
D[0,1]→ σε

∫ u

0

∫ z

0

W (y)dydz,

from which we obtain that

lim
M→∞

P

(
max

1≤k≤xM1/5−k∗

∣∣∣∣∣M−1/2
k∑
t=1

bt

∣∣∣∣∣ < cσδf

)
= P

(
sup

0≤u≤x

∣∣∣∣∫ u

0

∫ z

0

W (y)dydz

∣∣∣∣ < cx−5/2 δfσ

σε

)
.

By changing variables in the integral and applying the scale transofmration of the Wiener process,

we get that

sup
0≤u≤x

∣∣∣∣∫ u

0

∫ z

0

W (y)dydz

∣∣∣∣ D→ x−5/2 sup
0≤u≤1

∣∣∣∣∫ u

0

∫ z

0

W (y)dydz

∣∣∣∣ ,
from which the result follows

Lemma 8.6. If (2.6), (4.27)–(4.31) hold, k = kM and

φM = O(1/kM ),

then we have that (
φM
kM

)1/2 kM∑
t=1

bt
D→ N(0, ω2),

where N(0, ω2) is a normal random variable with zero mean and variance ω2.
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Proof. We recall that φ = φM = 1 − (α + β). According to Corollary 3.1 in Hall and Heyde

(1980) we need to show only that

φ

k

k∑
i=1

σ2
i
P→ ω2 (8.33)

and

φ2

k2

k∑
i=1

σ4
i
P→ 0 (8.34)

as M →∞. It follows from (2.6) that

σ2
i = ω + (αεi−1 + β)σ2

i−1, i ≥ 1 (8.35)

and therefore

σ2
i = ω

i−1∑
=0

j∏
`=1

(αε2i−` + β) + σ2
0

j∏
`=0

(αε2i−` + β)

(
∏
∅ = 1). Hence

Eσ2
i = ω

1− (α+ β)i−1

φ
+ (α+ β)iEσ2

0 . (8.36)

Squaring (8.35), taking the expected value of both sides we conclude that with zi = ω2 + 2ω(α+

β)Eσ2
i−1 and z = E(αε2i−1 + β)2 that

Eσ4
i =ω2 + 2ω(α+ β)Eσ2

i−1 + E(αε2i−1 + β)2Eσ4
i−1

=zi + zEσ4
i−1,

which yields

Eσ4
i =

i−1∑
`=1

z`−1zi−` + ziEσ4
0 . (8.37)

By (8.36) we have that

zi−` ≤ ω2 +
2ω2

φ
+ (α+ β)i−`Eσ2

0

and therefore (8.37) yields

Eσ4
i ≤

(
ω2 +

2ω2

φ
+ Eσ2

0

)
z(1− zi−2)

1− z
+ zi−1Eσ4

0 . (8.38)

Observing that

E(αε2i−1 + β)2 = (α+ β)2 + α2E(ε2i−1 − 1)2 = 1− 2φm + o(aM/M), as M →∞,

it follows from (8.38) there is a constant C such that

Eσ4
i ≤ C/φ2

M . (8.39)
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Using (8.39) we conclude that

φ2

k2

k∑
i=1

Eσ4
i ≤

C

k
,

so Markov’s inequality implies (8.34). We rewrite (8.35) as

σ2
i = ω + (α+ β)σ2

i−1 + α(ε2i−1 − 1)σ2
i−1

we get

φ

k

k∑
i=1

σ2
i = ω +

1

k
(α+ β)σ2

0 −
1

k
(α+ β)σ2

k +
1

k

k∑
i=1

α(ε2i−1 − 1)σ2
i−1.

Using (8.39) we obtain that

E

(
1

k

k∑
i=1

α(ε2i−1 − 1)σ2
i−1

)2

=
1

k2

k∑
i=1

α2E(ε2i−1 − 1)2Eσ4
i−1

= o

(
1

k

aM
M

1

φ2
M

)
,

so by Chebyshev’s inequality we have

1

k

k∑
i=1

α(ε2i−1 − 1)σ2
i−1 = oP (1).

Combining (8.36) with Markov’s inequality we conclude

1

k
σ2
k = oP (1),

which completes the proof of (8.33).

Proof of Theorem 4.5. Let

kM = C

(
M

aM
+
( aM
M2γ

)1/(1−2γ)
)
.

We note that kM satisfies the assumption of Lemma 8.6. It follows from Lemma 8.6 that for

i = 1, 2 and all x > 0

lim
C→∞

lim inf
M→∞

P
{
V (i)(kM ) > x

}
= 1,

establishing Theorem 4.5.
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with applications to monitoring structural change. Statistica Sinica 24(2014), 1043–1073

(with online supplemen).
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[8] Berkes, I., Horváth, L. and Kokoszka, P.: Near–integrated GARCH sequences. Journal of

Applied Probability 15(2005), 890–913.

[9] Billingsley, P.: Convergence of Probability Measures. Wiley, New York, 1968.

52



[10] Bollerslev, T.: Generalized autoregressive conditional heteroscedasticity. Journal of Econo-

metrics 31(1986), 307–327.

[11] Busetti, F., and Taylor. A.: Tests of Stationarity Against a Change in Persistence, Journal

of Econometrics 123(2004) 33–66.

[12] Bradley, R.C.: Introduction to strong mixing conditions. Volumes 1–3. Kendrick Press, Heber

City, UT, 2007.

[13] Caner, M. and Kilian, L.: Size distortions of tests of the null hypothesis of stationarity:

evidence and implications for the PPP debate. Journal of International Money and Finance

20(2001), 639–657.

[14] Cochrane, J.: A critique of the application of unit root tests, Journal of Economic Dynamics

and Control, (15), (1991), 275– 284

[15] Chow, Y.S. and Teicher, H.: Probability Theory: Independence, Interchangeability, Martin-

gales. Springer Verlag, 1988.

[16] Chu, C.–S.J., Stinchcombe, J. and White, H.: Monitoring structural change. Econometrica

64(1996), 1045–1065.

[17] Csörgő, M. and Révész, P.: Strong Approximations in Probability and Statistics. Academic

Press, 1981.

[18] Cheung, Y. W. Chinn, M. D.: Further investigation of the uncertain unit root in GNP.

Journal of Business & Economic Statistics, 15(1997), 68–73.

[19] Diebold, F. X. and Senhadji, A. S.: The uncertain unit root in real GNP: Comment. The

American Economic Review, 86(1996)., 1291–1298.

[20] Dedecker, J., Doukhan, P., Lang, G., León R., José, R. Louhichi, S. and Prieur, C.:Weak
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