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Chapter 16 

Greywater Recycling and Reuse 

Katherine Hyde and Matthew Smith 

16.1 Introduction 

The generation of greywater from human bathing and washing is as ubiquitous as the 

generation of sewage. Untreated or ‘raw’ greywater is a wastewater that is relatively 

lightly loaded in organic pollutants, and commonly comprises approximately one third of 

all human wastewater arising in many developed countries. In traditional and existing 

drainage systems in the built environment, either inside or outside of properties, all 

untreated greywater is combined and mixed with more polluted wastewaters flowing into 

the sewer. More polluted wastewaters can include sewage and faecal matter from toilets, 

dishwasher discharges, food waste, garage drainage, oils, and other effluents. Due to this 

mixing of wastewaters, the sewage causes degradation in the quality of the less polluted 

greywater. 

The opportunity to separate out the less polluted greywater is thus foregone. This standard 

practice means that any original volumes of untreated greywater subsequently require 

more intensive treatment at the wastewater treatment plant (WTP) than they would have 

done had they not been discharged into the mixed sewer environment. In many respects, it 

may be significantly more environmentally prudent, CO2 emission reducing, and resilience 

enhancing to maintain the separation between polluted sewage and less polluted greywater 

flows. 

Furthermore, as more greywater is treated, recycled, and reused, the volume of pristine 

mains water required for basic functions such as toilet flushing and garden watering is 



reduced (see Hatfield et al., 2014). This leads to better overall urban water cycle 

efficiency, and in certain circumstances, may also lead to carbon savings and system cost 

reductions. Unfortunately, influencing changes in wastewater system configurations is 

currently not predicated in strategy and policy in the water industry at local or national 

levels. 

There is an option for utilising greywater for irrigation, and this has potential for sustaining 

green infrastructure during times of drought. While this principle achieves wide, cursory 

acceptance and would be unlikely to be rejected during an intensely dry period, significant 

barriers exist to regular irrigation using greywater. 

16.2 The Ubiquitous Nature of Pollutants in Wastewater from Baths, Showers, and 

Handbasins 

So far, it is assumed that all wastewater from bathrooms remains in the piped urban 

environment, whether being discharged to the foul sewer or being recycled in a building’s 

plumbing system. 

In fact, it is not necessarily an environmental offence to discharge small volumes of 

treated bathroom greywater directly to the environment, provided they are not polluting. 

For example, treated effluent from a septic tank or a small sewage treatment plant can be 

discharged into the environment as long as the discharge point does not lie in a Source 

Protection Zone 1, and is less than 15,000 litres per day (EA, 2016). 

This approach allows treated greywater to be applied to kitchen gardens, orchards, 

allotments, and so on. Clearly, this must be carefully controlled because any exceedances 

of limits and quality standards would attract a legal warning and possibly a penalty or fine 

from the Environment Agency. Legality under pollution prevention legislation and 

regulations depends on the greywater source, nature, and volume/ flow characteristics (see 



Section 16.9). Furthermore, the concept of discharging untreated greywater directly to the 

environment for the purpose of irrigating green infrastructure might sometimes be seen as 

unpalatable in environmental quality terms, even if the pollutant concentrations in the 

discharge are low. Visual and sensory observations, such as smell, colour, and clarity may 

occasionally be useful as an ‘early warning indicators’, but are rarely accurate or 

scientific. 

One of the practical problems is that if, for example, a basic in-line filter is installed to 

treat discharges of shower and bath water, it may not be possible to monitor the quality of 

the treated greywater. In order to reach a reliable view about treated water quality and 

compliance with standards and regulations, appropriate monitoring and recording 

equipment is essential. There is a range of equipment available from basic monitors for 

pH, to more competent monitoring and recording instruments. Even the lowly pH 

measurement, when taken on a regular basis, can assist the householder in becoming 

familiarised with the performance of a basic filter. In some cases, this may be sufficient to 

alert the homeowner about the start of deterioration in the normal performance of the 

filter, thus triggering maintenance checks and remediation. 

One of the reasons for raising this important question is that, in cases where chemical and 

microbiological analysis has been undertaken, the analysis demonstrates the degree of 

safety in discharging the treated greywater into the environment. Finley et al. (2009) found 

no significant difference in contamination levels between crops irrigated with tap water, 

untreated greywater, and treated greywater. They stated that faecal coliform levels and 

faecal streptococcus levels were highest on carrots and lettuce leaves, respectively, but 

that contamination for all the crops they tested were low, and constituted an insignificant 

health risk. 



16.2 The Quality of Untreated Greywater and Its Water Resource Value 

The integration of physical and environmental sciences combined with socioeconomic 

factors and socio-technological behaviours and practices is fundamentally influential when 

considering anthropogenic engagement in greywater recycling and reuse. 

Human engagement may often exhibit polarised reactions, in the form of enthusiastic 

alignment with the principles and with the environmental benefits gained through the 

recycling of water. In contrast, disengagement may be observed, for example, in the 

inherent right of access to pristine water for all needs, or because water is “free” (rain 

arrives without any payment), and therefore, wastage of water appears to some degree, to 

be inconsequential. Possibly more complex reactions present unwillingness to use recycled 

greywater based upon religious reasons, or upon health or safety concerns (Hyde et al., 

2016). These views are largely founded upon perception, though often scientifically 

quantifiable. 

For this reason, it is becoming more pressing to engage with customers about the sharing 

of information on water quality. In future, as customers become more familiar with water 

quality parameters such as acidity and alkalinity, nitrate (NO3), biochemical oxygen 

demand (BOD), and more, there is likely to be increased dialogue between customers 

concerning water quality results and suppliers. 

16.3 Greywater Terminologies Used in This Chapter 

One important point of terminology relates to definitions of different greywater flows. 

Most importantly, all existing flows from handbasins, baths, and showers comprise 

untreated greywater at their point of discharge to the collecting waste pipes. In this 



chapter, the use of the term ‘treated greywater’ is used as consistently as possible to 

distinguish it from greywater that has not been treated, filtered, or chlorinated.  

16.4. Pollutants in Untreated Greywater 

The quality of greywater relates directly to the source from which the greywater originated 

and the uses to which it has been put. In some cases, relatively clean handwash water may 

often contain few other constituents than the water from tap(s), the surface dirt and 

bacteria from hands, the dispensed hand soap or steriliser, and other common constituents 

from the use of handbasins. Some of the cleaning products used for cleaning the utilities 

and floors, and the wastewater from the cleaning regimes in bathrooms will be disposed of 

either via the waste pipe(s) from the handbasins, or alternatively via the toilets themselves. 

Circumstantial evidence regarding bathroom behaviour has been noted but has to be 

excluded from rigorous data collection and analysis, which tends to suggest a wider range 

of these kinds of behaviours than might be gathered from available primary data. 

Commonly, this is private, and good data are rarely available. To provide one example, 

babies and clothes might be bathed and washed respectively in handbasins, an activity that 

is likely to give rise to higher levels of bacteria in the basin wastewater. This leads to one 

important observation about raw greywater, which is that, while assumptions about the 

average pollutant levels of a typical raw greywater from one specific location in one 

specific building may be reasonable, the actual distribution and frequency of variation in 

the pollutant concentrations can rarely be assumed. They can be predicted only in 

generalities, or after data sampling and analysis at specific sites. 

On the other hand, since any waste stream may demonstrate consistently low pollutant 

concentrations after being subjected to a robust treatment process, so may be the case with 

greywater. Indeed, this is what is required to make greywater resources increasingly 



useful, by producing a known, reliable, and acceptable water quality. This is further 

explored in Section 16.6. 

Shower and bath wastewater give rise to pollutants of the types already mentioned and 

also exhibit a range of constituents and concentrations from bath oils, shampoos, skin 

beauty treatments, hair and hair dyes, to pharmaceutical preparations, medical and wound 

treatments, and small solid objects. In some buildings, muddy clothes and outer garments 

are washed in bathrooms. Also, dust and substances from various trades such as brick and 

plaster dust, paint, agricultural dusts, liquid treatments used in any trade including 

pesticides and repellents, oils, grease, and fuels, and many other substances may be 

encountered. Many workers in trades do not return from site to the office at the end of 

their working day, and consequently, washing and showering at home introduces these 

typical occupational contaminants into greywater. Without further evidence, it might be 

assumed that such pollutant concentrations arising could be relatively low. 

A number of basic tests can be conducted to check the variability of certain key quality 

characteristics of any greywater. Although it is preferable to know the concentrations of a 

full range of quality parameters of the greywater being discharged, on a routine basis this 

very often has to be reduced to a few parameters that can be monitored easily by the use of 

hand-held probes and indicator solutions. Most domestic greywaters are not ‘regulated’ 

(Environmental Permitting Regulations, 2010), in the sense that they are not required by 

UK regulations to be tested daily or weekly according to a frequent and specific timetable, 

and there is no requirement to keep daily quality records. Where discharges are regulated, 

there is likely to be a more rigorous regime in place. 

In experiments using greywater, some authors such as Sawadogo et al. (2014) have used 

untreated rather than treated greywater, while others such as Pinto et al. (2010) and 

Christova-Boal et al. (1996) have tested various categories of greywater, which can lead to 



misunderstanding of what greywater actually is. Wiel-Shafran et al. (2006) tested greywater 

that included a significant proportion of laundry detergent solution, typical of washing 

machine wash cycles. Washing powders and solutions often contain aggressive ingredients, 

and as a consequence, some of the greywater currently recycled in the United Kingdom 

excludes laundry detergents. Most recently published studies have focused on greywater 

collected only from handbasins, baths, and showers, thus excluding greywater obtained from 

washing machines. In summary, this is a critical differentiator since studies using only 

bathroom and handbasin greywater will derive their results from greywaters containing 

lower concentrations of surfactants and salts than are used in washing machines. Avoiding 

the use of wastewater from kitchen sinks (‘sullage’) avoids problems associated with, for 

example, the accumulation of fats, oils, and greases, known in the water industry as F.O.Gs. 

At a local scale, it is theoretically possible for households to control their own greywater 

quality by controlling the volumes of water used for showers, baths, and handbasins, and by 

controlling the amounts of soap and other personal hygiene products that are used. In 

practice, this requires procedures usually too onerous for an average household to control 

on a regular basis. 

16.5 Standardising Greywater Treatment Systems: Removing and Minimising 

Pollutant Concentrations 

When designing systems for treating and recycling greywater, the quality of the untreated 

greywater should be assumed to be contaminated, in the absence of definitive data. The 

terminology used in this chapter follows, as far as possible, that set out in BS: 8525 Parts 1 

and 2 (2010 and 2011, respectively). 

In order to facilitate discussions about wider reuse, greywater treatment will be discussed, 

reviewed, and evaluated where it is relevant to the development of integrated urban 

systems. Underlying the scientific approach is the general baseline assumption that 



greywater contains more pollutants than ‘clean’ water. In the United Kingdom, clean 

water is usually taken to be piped mains water delivered to consumers at potable and 

drinking water standards for human consumption. 

There are a number of attributes of greywater quality and greywater supply that require 

scrutiny before greywater can be recycled, treated, and reused. Some of the pollutants 

found in greywater are also present in mains water, although usually at lower 

concentrations in the latter. For this reason, the reference term ‘constituents’ will be used 

in preference to ‘pollutants’, wherever they are occurring in a controlled environment such 

as an in-building water system. This will be explained according to the principles of 

constituent concentration profiles, whereby a range of concentrations is measured during 

longitudinal studies, for example, while being compared to the variability of a number of 

other factors. Once outside the built environment, greywater starts to mix with other 

sources of water, and here, greywater constituents are generally more accurately described 

as pollutants. 

The Environment Agency’s guidance (EA, 2016) requires an environmental risk 

assessment to be undertaken as a critical precursor prior to any greywater discharge. While 

the specific pathways for particular discharges of treated greywater must be subjected to 

individual assessment, in the EA guidance (2016), the following points have been noted in 

relation to the discharge of domestic greywaters. First, sensitive receptors must be 

identified and a risk assessment undertaken. Receptors include any places used to grow 

food, or to farm animals or fish; fields and allotments used to grow food; drain and sewer 

systems; local groundwater protection zones or Nitrate Protection Zones; homes or groups 

of homes; private drinking water supplies; schools, hospitals, or other public buildings; 

playing fields and playgrounds; conservation and habitat protection areas, including Sites 

of Special Scientific Interest (SSSIs); ponds, streams, rivers, lakes, and the sea. Second, 



although a treated greywater is likely to be of good quality, there should be no hesitation 

in comparing its constituents with those specified for the minimum requirements for 

treated sewage or trade effluents when the discharge compliance arrangements are being 

considered. In these cases, risks to surface water from hazardous pollutants, risks from 

“sanitary” and other pollutants, and risks to groundwater must all be considered (EA, 

2010). 

Third, once the potential receptors have been identified, the applicant has to state what the 

potentially consequential risks are; these include uncontrolled, unexpected, and unintended 

emissions as well as regular and frequent discharges. Where no such risks are relevant to 

the circumstances, the applicant must state that they are not relevant and may have to 

provide substantiating evidence, which may include an exercise to screen out potential 

risks (further details given in Section 16.9) by testing whether the discharges are likely to 

be of acceptable environmental standards or discharge limits. Constituents arising from 

washing and bathing include personal care products as sold over the counter. These might 

broadly present a similar toxicological risk to those encountered during product use itself, 

although the concentrations of exposure and incidental mixtures with other pollutants will 

be different. Personal care products sold in the United Kingdom provide details of the 

ranked order of constituents according to proportion, from the highest to the lowest, but 

rarely provide specific concentrations. The allowable discharge concentration for each 

substance or determinand to achieve ‘no deterioration’ in the environment must be 

calculated by the applicant. This condition for achieving no deterioration is not optional. 

Each applicant must calculate or determine appropriate limits for the discharge that are 

environmentally protective, technically feasible, and whose cost is proportional to 

potential benefits. For new discharges, the overall polluting load must be managed so that 

no individual concentration of ammonia, phosphorus, or BOD increases. Where this is not 



feasible or cost-effective, the Environment Agency may allow a within-class deterioration 

of up to 10%. Applicants for new discharges must be very careful to check that recent 

surface water quality concentrations have not improved since figures were last published, 

leading to potentially unexpected water quality impacts. 

Personal care products must not contain substances that are pathogenic or capable of 

producing disease. Thus, they are manufactured by including either bacteriocidal or 

bacteriostatic constituents so that the product is not capable of supporting the proliferation 

or transference of bacteria. However, one pollutant of note due to increasing evidence of 

its environmental persistence in wastewaters is Triclosan, a bacteriocide commonly 

included as an ingredient in cleaning and personal care products (Ricart, 2010). 

16.6 Managing the Environmental Characteristics, Applications and Urban Uses of 

Treated Greywater, and Urban Uses 

Sawadogo et al. (2014) conducted tests and evaluations on plant growth during irrigation 

with untreated greywater. They focused on irrigation using laundry water at low, medium, 

and high concentrations of detergent, whereby the highest concentration was a worst-case 

scenario in comparison with concentrations normally found in greywater from baths and 

showers. The high concentrations of detergent produced adverse effects, causing death in 

both lettuce and okra, whereas medium to low concentrations produced between low to no-

discernible effects. Wiel-Shafran et al. (2006) reported that irrigation using insufficiently 

treated greywater is ‘mistakenly considered safe’. They suggested that known surfactant 

concentrations in greywater range from 0.7 to 70 mgL−1 and that accumulation in soils can 

cause hydrophobia in soils, thus affecting soil productivity. 

 

However, both Wiel-Shafran et al. (2006) and Lado and Ben-Hur (2009) (2009) state that 

lightly loaded greywaters are more reliable in terms of avoiding potentially damaging, 



unwanted polluting effects for crops and soils. Thus, if the inorganic and organic loading of 

greywater can be reduced by treatment, then that is likely to lead to less significant effects 

on crops. Further research is needed to determine the appropriate extent of treatment 

required for greywater from different sources that results in a quality which reduces adverse 

impacts and encourage crop growth. 

Sawadogo et al. (2014) reported that surfactants in irrigation waters containing detergents 

have been recognised as a major contributor in the reduction of hydraulic conductivity of 

soils. In the cases of irrigation water with higher detergent concentrations, more advanced 

soil degradation can occur, leading to water-repellent soils. Lado and Ben-Hur (2009) 

showed that these have negative impacts on agricultural productivity and environmental 

sustainability. The question of the application of dilute greywaters for sustaining green 

infrastructure appears less widely understood. 

Pinto et al. (2010) reported the key chemical characteristics of potable and greywater quality 

used in their irrigation and growth trials of silverbeet, over a period of 60 days (see Table 

16.1). 

Table 16.1. Greywater and tap water quality used in irrigation and growth trials (Pinto et 

al., 2010). 

Sample pH Electrical conductivity 

µS/cm 

Total nitrogen, mg/L Total phosphate, mg/L 

Greywater 10.5 1358.0 0.2  4.4 

Potable 7.0 277.0 0.16 0.0 

 

Christova-Boal et al. (1996) applied greywater with a pH in excess of 8.0 during some of 

their growth tests. The authors observed that greywater has the potential to increase the soil 

alkalinity if applied to gardens for a long period. Pinto et al. (2010) reported pH results in 

excess of 10.0 and described the phytotoxicity arising from greywater reuse as being 

principally due to anionic surfactants altering rhizosphere microbial communities. Such 



phytotoxicity effects arising from greywater reuse demonstrate significant variability of 

impact according to plant species. 

In Table 16.2, the authors Sawadogo et al. (2014) provided electrical conductivity (EC) 

results in comparison to low, normal, and high concentrations of surfactant, expressed in 

terms of mgL−1 of linear alkylbenzene sulphonate (LAS). Of those three surfactant 

compositions, the greywater applied in Pinto et al. (2010) aligns approximately with the EC 

of the normal concentration surfactant used in Sawadogo et al. (2014). In the latter case, the 

pH, 9.9, of the normal concentration surfactant also lies in a reasonably comparable range 

to the pH 10.5 greywater applied by Pinto et al. (2010). The increasing concentrations of 

detergent LAS gave rise to increasing pH and EC values, as well as increasing the values of 

total N, C, and P. 

Table 16.2. Constituents in greywater tests (Sawadogo et al., 2014).  

Watering 

solutions 

Distilled 

water 

Low 

concentration 

surfactant, 

0.1 g L−1 

Normal 

concentration 

surfactant, 

1.0 g L−1 

High 

concentration 

surfactant, 

5.0 g L−1 

pH  6.9 9.1 9.9 10.2 

EC (mS cm−1)  28 159 1082 4870 

Detergent as 

LAS (mg L−1) 

ND 13.5 135.6 678 

Ntotal (mg L−1) ND 0.01 0.12 6.6 

Ctotal (mg L−1) ND 15.3 153 765.1 

Ptotal (mg L−1) ND 13.2 132.3 661.6 
LAS = linear alkylbenzene sulphonate; ND = not detected; EC = electrical conductivity. 

16.7 University of Reading’s 2016 Experimental Irrigation of Sedum using Treated 

Greywater 

The University of Reading monitored growth trials of sedum grown in floor-standing boxes 

irrigated using bathroom greywater for a 6-month period during 2015–2016. The statistical 

mean values calculated from six-months of data are shown in Table 16.3. Irrigation was 

conducted using untreated greywater, treated greywater, and a mains tap water control. This 



enabled the assessment of analytical variables that were likely to produce any potential 

growth effects to be specifically attributed to irrigation. The chemical characteristics of the 

greywater were based on the British Standard ‘recipe’ for synthetic test greywater, which 

constituted a ‘lightly loaded’ greywater quality according to the EC and TP results, although 

the TN is significantly higher than the TN used in Pinto et al. (2010). 

Table 16.3. Treated greywater and tap water quality monitored from 02 September 2015 to 

02 March 2016. 

Sample pH Electrical 

conductivity, µS/cm 

Total nitrogen, 

mg/L 

Total phosphate, 

mg/L 

Treated 

greywater 

7.6 669.9 4.5 0.02 

Potable 

water  

7.8 520.2 0.5 0.01 

 

<P>The potable (mains) water comprised the largest component of the synthetic greywater 

and so, unsurprisingly for a lightly loaded greywater, the pH of the tap water and the pH of 

the greywater were very similar, as were the phosphate results in both cases. The EC was 

higher than that of the potable water, which was mainly due to the organic and inorganic 

loading associated with the presence of surfactants such as detergents or shampoo, as well 

as the constituents of the treated sewage final effluent (FE). The total nitrogen was also 

higher in the greywater than in the potable water due to the nitrogen content of the treated 

sewage effluent included in the synthetic greywater recipe, as well as the surfactants. 

 

Treated sewage effluent was not added because: 

1) The synthetic mix required a source of pollutants containing similar components to 

shower greywater, which follows the UK standard for Bacteriological Examination test 

procedures that would be difficult or impossible to replicate. 



2) The test procedure needed to challenge the greywater treatment system to demonstrate 

that higher bacterial loads were safely eradicated from the treated greywater by a 

satisfactory process. 

16.8 Soil Results Evaluated during Irrigation using Greywater Constituents 

In Sawadogo et al. (2014), the plant growth parameters in okra and lettuce were measured 

every week, including the dry weights of stems and leaves of all plants. Soil pH and soil 

EC tended to increase as the detergent concentrations increased in the irrigation solutions. 

There were no significant differences in okra fruit growth (fresh and dry weight) using 

distilled water, low concentration (LC), and normal concentration (NC) treatments. 

However, plants in HC treatments died 20 days after planting (DAP). No significant 

difference was noticed in lettuce shoots (dry weight) between LC, NC, and DW 

treatments, but lettuce in HC treatments died 12 DAP. EC significantly increased in all the 

treatment regimes. Laundry detergent can inhibit plant growth, and the application of 

greywater containing high concentrations of detergent can increase soil salinity. 

In the University of Reading’s study, the sedum plants showed a gradual decrease in size 

and plant health during the winter months which was found regardless of the test category 

of irrigation water, whether greywater, treated greywater, or mains (potable) water. With 

the return of average ambient temperatures above approximately 10°C, the plants in all the 

irrigation categories and soil types exhibited more leaf growth. In test sedum boxes kept in 

the greenhouse during the first 1.5 months of the trials, a significant increase in plant 

development and growth volume was found in comparison with plants grown outside. 

Subsequently, the greenhouse-grown plants were moved outside in order to compare their 

performance during UK winter weather conditions with those plants that were already 

outside. The health of the latter group of plants deteriorated more quickly than that of the 

plants that had been outside from the beginning of the trials. 



Sodium is an environmental pollutant when it is present at concentrations above 

background levels (and in some cases, at concentrations at background levels). Figure 16.1 

shows that all plants had similar leaf sodium concentrations at the start of the trials, but 

this reduced during the first two months and did not subsequently recover. 

 

Figure 16.1 <Longitudinal changes in plant leaf sodium concentrations for differing 

watering regimes; ‘50:50’ refers to a plant substrate of 50 parts growing medium to 50 parts 

compost; ‘80:20’ refers to a plant substrate of 80 parts growing medium to 20 parts compost; 

and ‘20:80’ to a plant substrate of 20 parts growing medium to 80 parts compost. 

 16.9 Applying the Principles of Controlled Waters to Greywater Discharges for 

Sustaining Green Infrastructure  

 Evidence from studies reviewed in this chapter has established that greywater can affect 

crops and other plants when higher concentrations of detergent are applied, at the highest 

limit even causing plant death. The evidence from the Reading trials demonstrated that 



impacts from watering sedum using dilute greywater gave rise to only limited impacts 

during a winter period when the plants were stressed due to low ambient temperatures. 

 If significantly less impacts arising from low concentrations of detergent could be 

demonstrated, consideration would then be given to the concept of allowing treated 

greywaters to be used for watering green infrastructure. The Environment Agency (EA) 

(2016) states that risk assessments are not required for greywater discharges from 

domestic properties unless: 

 

 a trade discharge is included in the effluent, or 

 there is a discharge to ground or surface water of >15 m3 per day, or 

 the discharge to ground is more than 2 m3 per day, and the location is in a 

groundwater Source Protection Zone, SPZ1 (an area of highest risk to groundwater 

quality). 

 

 The EA (2016) also does not require screening tests if the water is discharged to the same 

river or groundwater that the water was originally taken from or if no hazardous pollutants 

are added to the water. This is potentially of assistance to small greywater discharges that 

contain no hazardous pollutants, since the greywater discharge could potentially support 

green infrastructure in the same area of the catchment. 

 The stages required for screening for a particular discharge include: 

 

 Identification of the pollutants released from the greywater treatment plant or source 

 Gathering data on the environmental impacts of the pollutants prior to screening 

 Undertaking the screening itself 



This is likely to apply to discharges of greywater containing surfactants. Pollutants must 

be measured if they are hazardous and released to freshwaters, estuaries, and coastal 

waters, or to sewers. EA (2016) specifies that pollutants could be present in the discharge 

if: 

 

 1) They have been detected by chemical analysis. 

 2) They are allowed to be added to the discharge (e.g. water company trade effluent 

consent or discharges from installations). 

 3) They have been added to the discharge by means of a treatment process (e.g. using iron 

or aluminium to remove phosphorus). 

 Membrane greywater treatment systems (Hatfield et al., 2014) do not introduce chemicals 

into the greywater as part of the treatment process; thus, its quality, once treated could 

therefore comply with EA requirements. However, bathing and personal hygiene products 

in greywater may require routine testing to demonstrate that the greywater is of a suitable 

quality for reuse. 

 The average flow rates, times, and duration of discharge, for example, 12 hours per day, 

will be required to be stated for assessing and monitoring compliance. The risks arising at 

the site are assessed, including the risks of the discharge creating environmental pollution 

and the sources of the risks. The assessment steps required by EA (2016) include: 

 

1. Identification of the receptors at risk from the site (people, animals, property, etc.) 

2. Identification of the possible pathways from the sources of the risks to the receptors 

3. Assessment of the relevant risks to the specific activity; check that they are acceptable 

4. Statement of the plans for controlling the risks if they are unacceptably high 



The risk assessment must be submitted as part of a permit application, and a copy must be 

included in the management system. The criteria for unsatisfactory overflows include 

operating a breach of permit conditions and/or causing a breach of water quality standards 

and other regulatory standards EA (2016). 

16.10 Concluding Comments and Review   

Separating greywater before it combines with sewage and laundry effluents can be used to 

sustain urban environments and their green infrastructure by irrigating using treated 

greywater. An analytical approach to the quality and reuse opportunities for greywater 

leads to the determination of water reuse and irrigation potential, feasibility, and water 

stewardship. The evidence from various studies shows that lightly loaded greywaters can 

probably be used with confidence for watering certain types of green infrastructure. This is 

an important potential means for sustaining vegetation during times of water stress or 

drought. 

For larger volume discharges, affordable system configurations for achieving licensable 

discharges to support plants need to be identified and approved. For smaller, domestic-scale 

discharges, it appears that there is often little legislative barrier to direct irrigation using 

treated greywater. 

Rationalisation of the technology configuration, and thus the potential costs to be incurred, 

will provide an opportunity to carefully design and implement landscaping specifically to 

work in conjunction with irrigation systems. This will reduce levels of pollutants entering 

the urban environment while establishing and developing the opportunity for more 

greywater sources to be utilised in a sustainable manner. 
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